GENOTOXICOLOGICAL ASSESSMENT OF PYRETHROID INSECTICIDE BIOALLETHRIN IN FRESHWATER FISH CHANNA PUNCTATUS

Renu Chaudhari, Kamal Kumar Saxena*
Pest and Parasite Research Laboratory Department of Zoology, Bareilly College, Bareilly-243005

ABSTRACT: In this study micronucleus test was used to score the frequency of micronuclei in RBCs of fresh water fish Channa punctatus treated with bioallethrin. Channa punctatus were acclimatized in aquaria before experiments and divided in to control group and experimental group. Fishes of experimental group were exposed to sub lethal concentrations (0.0025ppm, 0.005ppm and 0.010ppm) of bioallethrin. The affected erythrocytes showed the occurrence of roundish micronucleus in the cytoplasm close to or completely free from the main nucleus. The results obtained reveal the differences in the frequency of micronuclei between these groups which are the clear indication of genotoxicity caused by bioallethrin in this fish.

KEYWORDS: Bioallethrin, Genotoxicity, Pyrethroid, Micronucleus test, Channa punctatus.

*Corresponding Author: Dr. K K Saxena Ph D.
Pest and Parasite Research Laboratory Department of Zoology, Bareilly College, Bareilly-243005
*E-mail Address: drkamalkumar09@gmail.com

1. INTRODUCTION
Fish is a valuable and easily accessible source of food. In the highly populated and developing countries like India, it can solve the ever-increasing demand of food for enormously growing population and the prevailing food scarcity. Fish provides high calorie diet to a large number of people all over the world but indiscriminate use of pesticides has reduced the fish growth and its nutritive value. Pesticides are extensively used to protect agricultural crops against the damages caused by pests. However, these chemicals may reach to lakes and rivers through rains and wind, affecting many
other organisms away from the primary target. Only 0.1% reaches the specific target [1]. The significant increase of chemical emissions in the water resources has lead to harmful effects for aquatic organisms [2, 3]. A large proportion of these compounds are potentially genotoxic and carcinogenic to aquatic organisms [4, 5]. Recent evidence indicates that fish, are quickly becoming scarce. The interaction of genotoxic contaminants with DNA causes various genetic changes, which can be transmitted to the next generations [4, 6]. Fish are able to uptake and retain different xenobiotics dissolved in water. They can be used to detect pollutants released into their environment. Sub lethal concentrations of pesticides in aquatic environments cause structural and functional changes in aquatic organisms and this is more common than mortality [7]. The genotoxic effects of environmental pollutants can be monitored using a broad range of both in vitro and in vivo biomarker assays but the micronucleus test are gaining popularity over other assays due to their sensitivity for detecting cytogenetic and DNA damage and the short time needed to complete a study [8, 9, 10]. The formation of morphological nuclear abnormalities (NAs) was first described in fish erythrocytes by [11]. NAs including blabbed nuclei (BL), lobed nuclei (LB), notched nuclei (NT) and binucleated cells (BN) have been used by several investigators as possible indicators of genotoxicity [12]. Micronucleus test (MNT) is a widely used cytogenetic technique for assessment of chromosomal damage induced by various genotoxicants. Schroder [13] first time studied the formation of micronuclei in mammalian bone marrow cells; subsequently this assay was developed by Schmidt [14] in mammalian systems. Like mammalian species, MNT has also been adopted to study genotoxicity in fishes. Fishes provide a suitable model for monitoring aquatic genotoxicity and waste water quality because of their ability to metabolize xenobiotics and accumulate pollutants [15]. Micronuclei in fish could be smaller in size than that suggested by Schmidt [14], because most fish chromosome are much smaller (e.g. 1/10 to 1/30 of the size of principal nucleus). The formation of micronuclei depends on fish species and target tissues and also on environmental conditions and the kind of pollution involved. Al Sabti and Metacalfe [10] have reviewed the literature on clastogenic effects of many chemicals and physical agents on fish cells, with emphasis on the induction of the micronuclei in teleost species. Svobodava et al. [16] studied the effect of Malachite green on Cyprins carpio by using micronuclei test. Campana et al. [17] evaluated genotoxicity of the pyrethroid \(\lambda \)-cyhalothrin using the micronuclei test in erythrocytes of the fish Cheridon interruptus. Sandra et al. [18] used MNT for the in situ mutagens in freshwaters in erythrocytes of Barbus plebejus from two natural environments. The present studies included the study of genotoxic effects of pesticides. It has provided valuable information about the changes in the genetic setup of the fish due to its exposure to pesticidal compounds which affect its overall development and in turn affect the human body, when taken as food.
2. MATERIALS AND METHODS

The common fresh water fish *Channa punctatus* were collected from the fresh water resources of Bareilly and adjoining places and acclimatized to laboratory conditions for few days in untreated soft water. After acclimation the fish were divided into experimental and control groups. Control group of fishes was kept in an aquarium for few days in tap water and experimental fishes were exposed to sub lethal concentrations of Bioallethrin *i.e.* 0.0025ppm, 0.005ppm and 0.010ppm. Sampling was done at interval of 5, 10, 15, 20, 25 and 30 days at the rate of 5 fishes per duration. The blood samples were collected from the heart of the fish and a drop of blood from each fish was directly smeared on to the slides. Then the slides dried for 12hrs (overnight). Smears were subsequently fixed in absolute methanol for 10 minutes. After that the slides were stained in 6-10% Giemsa stain for 30 minutes. Then washed with DDW and air dried over night finally the slides were mounted with DPX. The frequency of micronucleation in erythrocytes was detected under binocular microscope (Olympus) using 100x oil immersion lens.

3. RESULTS AND DISCUSSION:

The persistence of pesticides in aquatic environment may be dangerous for the survival of fish [19, 20, 21]. The pesticides present in water reach the fish body directly through contact with the skin and gills and indirectly through water taken in with the food. They reach in blood circulation and finally accumulate in various organs of the body. Fishes are affected upon exposure to low level of pyrethroids. Due to lipophilic nature of them gills of fish can absorb these compounds even at very low concentrations in water. As the metabolizing ability of these compounds in the body of fish is very poor, they accumulate and prove to be lethal to fish. Some workers [22, 23, 24, 25, 26] have reported that toxicity of synthetic pyrethroids and some other pesticides to fish is dose and time dependent. Bioallethrin is a potent contact non-systemic and non-residual pesticide with rapid knockdown activity. It is highly toxic to fish. Its toxicity is more at lower temperature and thus more toxic to cold than warm water fishes. Nauck *et al.* [27] have reported that the toxicity of pyrethroids is least affected by pH of water and hardness. In present investigations micronucleated cells were scored at three sub lethal concentrations of 0.0025ppm, 0.005ppm and 0.010 ppm of bioallethrin. The results obtained are shown in Table 1. Micronucleus test is a test used to detect DNA damage. The DNA damage can be correlated with the clastogenicity of the mutagens. A large proportion of pesticides are potential toxic, genotoxic and carcinogenic to aquatic organisms [4, 5]. The interaction of genotoxic contaminants with DNA causes various genetic disturbances, which often are irreversible and can be transmitted to next generation [4, 6].

In the present study exposure to bioallethrin caused the formation of micronuclei in erythrocytes of *Channa punctatus* (Fig.1 and 2). The formation of micronuclei is an indication of the mutagenic
nature of these compounds. Results of present investigations show that the frequency of micronuclei increased up to 10 days, after that the frequency of micronuclei started to decrease but even after 30 days of exposure the frequency was considerably higher than the frequency observed in control group of fishes.

The results obtained in this study clearly indicate the genotoxic effect of this compound in *Channa punctatus*.

Table-1: Percentage of micronucleated cells in blood of *Channa punctatus* exposed to sub lethal concentrations of Bioallethrin

<table>
<thead>
<tr>
<th>Concentration of bioallethrin</th>
<th>Period of exposure (in days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(Control)</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0000ppm</td>
<td>0.0</td>
</tr>
<tr>
<td>0.010ppm</td>
<td>0.0</td>
</tr>
<tr>
<td>0.005ppm</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0025ppm</td>
<td>0.0</td>
</tr>
</tbody>
</table>
CONCLUSION

The present findings indicate that micronucleus test is very useful for detecting the changes in the fish at genetic level. These studies also confirm the viability of this method as the powerful tool for measuring the relationship between genotoxicity and duration of exposure of fishes to pesticides and other pollutants. Therefore, this method can be successfully employed for in vivo genotoxic studies using fish as model species for environmental biomonitoring studies.
CONFLICT OF INTEREST

The authors declare that no competing financial interests exist.

REFERENCES

