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ABSTRACT: Lipid-binding proteins (LBPs) perform various essential functions in organisms not 

only in cellular lipid uptake, lipid transport, and lipid metabolism but also in gene expression 

regulation, cell signaling, and innate immune response to bacterial infection. Because conducting 

experiments for identifying LBP functions is time-consuming and costly, computational methods may 

be useful for predicting lipid-associated functions. Here, we propose a method for predicting whether 

a given protein is an LBP from its amino acid sequence. Our method is based on the support vector 

machine (SVM), a machine learning algorithm, which is widely used in several prediction tools of 

bioinformatics. For SVM, feature selection is important for the accuracy of prediction. Our method 

uses the distribution of position-specific scoring matrix (PSSM) scores called as the position-specific 

score distribution (PSSD) as the input feature of SVM. PSSD is calculated from a PSSM which is 

generated by a multiple sequence alignment and summarizes the contents of PSSM. PSSD takes 

into account the homolog information while reducing the dimensions of the feature vector. Using the 

PSSD, our method achieved a value of the area under the receiver operating characteristic curve of 

0.98 in a five-fold cross-validation test. In addition, our method achieved better performance in LBP 

function class prediction than that previously reported. We also examined one- and two-spectrum 

kernels, which have been widely used in protein function prediction, and showed that our method 

using the PSSD outperforms the existing methods. 
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1. INTRODUCTION 

Lipid-binding proteins (LBP) perform vital functions in organisms not only with regard to cellular 

lipid uptake, lipid transport, and lipid metabolism but also with regard to gene expression regulation, 

cell signaling, and innate immune response to bacterial infection [1-3]. LBPs have also been studied 

for the identification of therapeutic targets [4, 5]. However, because conducting experiments for 

identifying LBP functions is time-consuming and costly, methods of bioinformatics may be useful 

for predicting whether a protein is an LBP and what type of LBP functions does the protein performs 

have. A basic approach for predicting protein function is to use sequence similarity between the target 

protein and those already present in a database. However, in cases of low homology between the 

protein and those in the database, identifying function using this approach is difficult. LBPs have 

great variety in sequence and structure, and the detection of new LBPs in the database is not easy [6-

9]. Therefore, we developed a prediction system using machine learning that can automatically extract 

information from sequence data.Machine learning methods have been used to predict protein function, 

functional binding sites, localization, and structural classification of target proteins as well as to 

produce highly accurate results in each kind of prediction [10-14]. When machine learning methods 

are applied to a problem, a numerical descriptor called the feature vector must be computed. Various 

descriptors, such as amino acid composition, physicochemical properties, Gene Ontology terms, and 

position-specific scoring matrix (PSSM) have been proposed [13, 15, 16]. The evolutionary 

information from PSSM has been considered as essential for discriminating a functional binding site 

from a nonbinding site, particularly in binding site prediction [17-20]. PSSM has also been used to 

predict protein function and localization by encoding PSSM to the fixed size input feature vector [21-

23]. Here, we propose a new, simple method of converting PSSM to a feature vector effective for 

predicting LBP functions [1]. To our knowledge, prediction methods for LBP function classification 

have been proposed in two previous studies. Lin et al. [24] classified LBPs into the following nine 

classes: lipid degradation (LD), lipid metabolism (LM), lipid synthesis (LS), lipid transport (LT), 

lipid binding (LB), lipopolysaccharide biosynthesis (LPB), lipoprotein (LP), lipoyl, and all LBPs. 

They proposed a predictor using support vector machine (SVM) that consider physicochemical 

properties including hydrophobicity and polarity as inputs; SVM is a machine learning method 

applied to classification problems that searches for an optimized hyper plane in the feature space 

using a kernel function that defines the similarity between training samples. Lin et al. defined three 

groups of amino acids based on these properties and computed the composition, transition, and 

distribution in the sequence as descriptors of the proteins. The sensitivities and specificities of their 

predictor for each LBP class were in the ranges 76.6–90.6% and 97–99.9%, respectively. 

Bakhtiarizadeh et al. [25] used various properties extended from those used in the study by Lin et al., 

including amino acid composition, dipeptide composition, normalized Moreau–Broto autocorrelation, 

Moran autocorrelation, and other features obtained from a sequence. Bakhtiarizadeh et al. compared 
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the performance of two machine learning methods, neural network and SVM, and concluded that 

their predictor gave better performance using SVM than those using neural networks and reported by 

Lin et al. [26]. Here, we report the development of a predictor for LBP classification that uses new 

sequence features computed from a PSSM and compare the performance of our predictor with that 

of the previous study by Bakhtiarizadeh [25], hereafter referred to as “the previous study”. 

2. MATERIALS AND METHODS 

Dataset 

We collected 10,603 LBPs as a positive dataset and 53,015 non-LBPs as a negative dataset. The 

positive dataset comprised the following eight LBP classes: (1) LB, (2) LD, (3) LM, (4) LS, (5) LT, 

(6) LP, (7) LPB, and (8) lipoyl. This classification is based on the annotation (description of the 

function of a protein) of the Swiss-Prot database; the datasets were constructed using a keyword 

search of the database. Redundancy in each LBP class was removed by clustering sequences with a 

similarity of >90% using CD-HIT [27]. The negative dataset of non-LBP proteins was constructed 

and further refined by the removal of proteins having common domains with proteins in the positive 

dataset [28]. The negative dataset also comprised eight groups, each corresponding to an LBP class. 

Each negative dataset comprised five subsets of the five-fold cross-validation (CV) test described in 

section 2.3, later collected independently to prevent probable bias from selecting the negative data. 

These datasets were based on the previous study [25], but 17 proteins (13 instances of negative data 

and 4 proteins in LP) lacking any homolog in the NCBI NR database were not used.  

Feature Extraction 

The PSSM of each protein was calculated from the multiple alignment of the sequences obtained by 

two iterations of Delta-Blast [29] against the NCBI NR database with an E-value cutoff of 0.05 for 

alignments with conserved domains and an E-value cutoff of 0.002 for pairwise alignments. PSSM 

is widely used to predict the function of a protein, its functional binding site, and its subcellular 

localization [12, 30]. The rows and columns of a PSSM describe alignment position and type of amino 

acid, respectively. PSSMs are often used as an input to machine learning. In the prediction of a 

functional binding site, a PSSM is generally converted to a feature vector with a fixed window size 

to extract a regionally conserved pattern. In contrast, with regard to the prediction of binding of a 

given protein to other molecules, the feature vector should be taken from wider regions of proteins. 

Accordingly, we extracted all conserved information called as position-specific score distribution 

(PSSD) from PSSM rather than the regional conservation information of fixed-size windows.  
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Fig. 1 Flow chart demonstrating the calculation of alanine-PSSD 

 

PSSD is a frequency distribution of all the scores for each amino acid type in PSSM. Each element 

of a PSSD is a relative frequency of all the PSSM scores of an amino acid and corresponds to an 

element of the feature vector. Fig. 1 illustrates the method of calculation of a PSSD for alanine. In 

this method, we first calculate the number of occurrences of each PSSM score (the count table) and 

divide it by the sequence length (the total number of occurrences) to calculate the relative frequency 

(PSSD).  

Fig. 2 Relative frequencies of PSSM scores of all LBPs 

 

Fig 2 Relative frequencies of PSSM scores of all LBPs. We found that over 99.99% of scores were 

between −13 and 13 and decided to converting scores, the which greater than 13 and less than −13 to 

13 and −13, respectively.  
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Support Vector Machine 

We employed the radial basis function (RBF) that is capable of separating the training samples 

nonlinearly, as the kernel function. We used a library for support vector machines in the scikit-learn 

module [31, 32] to construct the prediction system with SVM. The cost parameter that determines the 

misclassification penalty and the gamma parameter used in the RBF kernel function were optimized 

on the basis of a five-fold CV test. We implemented a five-fold CV test for each LBP class and chose 

the optimal parameters based on the area under the receiver operating characteristic curve (AUC). 

Thus, these two parameters differed among the LBP classes.  

Evaluation 

The performance of our prediction system was measured using the five-fold CV test in which the 

complete datasets were randomly divided into five parts. One of the five parts was then used as a test 

set and the rest as training sets. This procedure was repeated five times until all parts were used as 

the test set. AUC is a measurement independent of the threshold of the decision value. AUC represents 

the separation ability of the prediction system, and an AUC value closer to 1 indicates a better 

prediction. We calculated the mean of AUC for five subsets of each LBP class. An SVM prediction 

system requires the threshold of its decision value to be fixed. The default value is usually set to 0, 

but we chose a decision value threshold based on the Matthews correlation coefficient (MCC)[13]. 

MCC is a balanced measurement used to assess the effectiveness of the prediction system. Three 

other measurements including accuracy (ACC), sensitivity (SE), and specificity (SP) were also 

computed with this threshold. These values were defined as follows: 

 

𝑀𝐶𝐶 =
𝑇𝑃 ×  𝑇𝑁 − 𝐹𝑃 ×  𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

𝑆𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

where TP, FN, TN, and FP refer to the numbers of true positives, false negatives, true negatives, and 

false positives, respectively period. These values were computed five times using each test set in the 

five-fold CV, and the means of those measurements were computed. Then, we calculated the average 
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performance of the five subsets of each LBP class and compared the results with those of the previous 

study [25].  

3. RESULTS AND DISCUSION 

Performance of PSSD-based prediction 

Table 1 The performance of the position-specific score distribution-based and previous method 

 AUC ACC SE SP MCC 

Lipid class Previous PSSD Previous PSSD Previous PSSD Previous PSSD PSSD 

All LBPs 0.95 0.980 89.28 93.30 89.2 91.25 89.22 95.35 0.867 

Lipid binding (LB) 0.96 0.984 90.61 95.13 90.55 94.46 90.68 95.81 0.904 

Lipid degradation (LD) 0.970 0.992 92.25 96.54 92.85 96.74 91.65 96.34 0.931 

Lipid metabolism (LM) 0.96 0.980 89.15 94.51 90.55 93.25 88.75 95.78 0.892 

Lipid synthesis (LS) 0.98 0.996 94.74 98.09 94.08 97.41 95.41 98.77 0.962 

Lipid transport (LT) 0.96 0.971 88.84 94.08 87.55 91.74 90.11 96.42 0.884 

Lipoprotein (LP) 0.96 0.969 89.06 90.78 88.85 88.77 89.06 92.79 0.817 

Lipopolysaccharide 

biosynthesis (LPB) 

0.97 0.984 93.26 95.21 92.58 93.23 93.94 97.18 0.906 

lipoyl 1 0.999 98.58 99.40 97.76 99.34 99.4 99.46 0.988 

The performance results of our prediction method and the method of Bakhtiarizadeh et al. are shown 

in Table 1. The PSSD-based method achieved ACC, SE, SP, and AUC of 93.30%, 91.25%, 95.35%, 

and 0.980, respectively, for the “all LBPs” class. These performances were higher than those reported 

in the previous study [25]; ACC and AUC were improved by 4.02 and 0.03 percentage points, 

respectively. ACC values of the individual LBP classes were improved by 0.86 (lipoyl class) to 5.49 
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(LM class) percentage points, and AUC of individual classes, except for the lipoyl class improved 

from 0.009 (LP class) to 0.024 (LB class). This result shows that the PSSD-based method succeeded 

in learning features shared among all LBPs but not among non-LBPs. Similarly, SE and SP of each 

LBP class showed higher performances by 0.64–4.10 and 0.12–6.77 percentage points, respectively, 

except for SE of LP. With regard to AUC, all LBP classes, except lipoyl, were improved by 0.008–

0.025. Notably, AUCs achieved in this study were the mean of five subsets of each LBP class based 

on the five-fold CV test, although the previous study [25] used the AUC of a subset with the highest 

overall accuracy in an independent evaluation test. MCCs are also shown in Table 1, although not 

reported in the previous study [25]. These results showed that PSSD is more effective for predicting 

LBPs than the combined features, including compositions and various physicochemical properties. 

Moreover, the abovementioned results suggest that PSSD possesses some specific patterns or 

characteristics of LBPs.  

Comparison with spectrum kernels 

Table 2 The performance of spectrum kernels with k = 1 and k = 2 and position-specific score 

distribution (PSSD) 

Lipid class Method AUC ACC SE SP MCC 

All LBPs 

k-spectrum kernel (k = 1) 0.655 60.78 62.96 58.61 0.227 

k-spectrum kernel (k = 2) 0.753 69.73 70.49 68.98 0.397 

PSSD 0.980 93.30 91.25 95.35 0.867 

There are several methods appropriate for representing sequence features. One basic method is the k-

spectrum kernel, which is widely used in sequence-based protein classification [34]. The kernel 

function of the k-spectrum is computed using k-mers that correspond to the substrings of k contiguous 

symbols occurring in a sequence. The dimension of the feature vector is 20k, and over fitting is severe 

for large k. In this study, we implemented the prediction method using k-spectrum kernels with k = 1 

and k = 2. The evaluation method was the same as that for PSSD. Table 2 compares the performance 

results of PSSD and the spectrum kernels with k = 1 and k = 2. As shown in the table, the spectrum 

kernel with k = 2 outperforms that with k = 1. This is because the spectrum kernel with k = 2 can 

extract more sequence features than k = 1. However, performance is further improved using the PSSD. 
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AUC values of PSSD are 0.325 and 0.227 higher than those of the spectrum kernels with k = 1 and k 

= 2, respectively. 

DISCUSSION 

The AUC value of 0.98 achieved by our method for predicting LBPs indicates that our method 

successfully discriminated LBPs from other proteins. Our method is based on the support vector 

machine (SVM), which is a machine learning algorithm widely used in several prediction tools of 

bioinformatics. In SVM, feature selection is important for prediction accuracy. We propose a new 

method to use the distribution of the PSSM scores called as PSSD as the feature input for SVM. 

Several previous studies have shown that PSSM can extract the sequence features effectively and 

have concluded that PSSM leads to better performance. PSSM is defined as a matrix that contains 

probability information of amino acids at each position in a multiple sequence alignment. PSSM 

describes the propensities of the residue substitutions at each position using information of homologs 

and is often used with windowing, particularly for functional site predictions including protein–

protein and protein–ligand binding-site predictions. Window size is an important parameter. 

Functional sites can be affected by several residues, but large window sizes lead to overfitting owing 

to the large dimension of the feature vector. With regard to the problems of binding prediction in 

which the function of an entire protein is the target of the prediction, it is not practical to use 

windowing because the window size becomes large (up to the length of the amino acid sequence of 

the whole protein). Because our PSSD is based on PSSM, it inherits the merits of PSSM. PSSD is 

calculated from the PSSM of the whole sequence and summarizes the contents of PSSM. PSSD 

considers homolog information and also reduces the dimensions of the feature vector. These are the 

probable reasons for the greater effectiveness of PSSDs than the protein features previously reported 

[25] and k-spectrum kernels.  
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Table 3 Numbers of proteins and sequence diversity of lipid-binding protein function groups 

Lipid class No. of proteins Average sequence similarity 

All LBPs 10,603  - 

Lipid binding (LB) 777 47.6 

Lipid degradation (LD) 706 40.4 

Lipid metabolism (LM) 616 37.5 

Lipid synthesis (LS) 3,355 42.6 

Lipid transport (LT) 235 42.5 

Lipoprotein (LP) 4,026 41.0 

Lipopolysaccharide biosynthesis (LPB) 553 43.6 

lipoyl 335 56.9 

As for LBP function class prediction, 0.969–0.999 of AUC values were achieved for all classes of 

LBPs. These values were obtained even when it was unknown whether a given protein was an LBP. 

Table 3 shows the number of sequences and their average similarity in each function class. The 

average similarity was calculated by averaging the sequence similarities obtained by the Smith–

Waterman algorithm [35] of all-against-all pairs in a class. The finding that among the eight function 

classes, lipoyl can be predicted with a high AUC may be because of the higher similarity among 

lipoyl sequences than that found in other function classes. The high AUC of LS may be because of a 

large number of positive data. Lipid transfer (LT) had a small number of positive data, and its 

sequence similarity is small; AUC is lower than that of other function classes. LP, which had the 

largest number of positive data, had the lowest AUC, although its value of 0.969 was not lower than 

that of other function prediction tools. LPs include several enzymes, transporters, antigens, adhesins, 

and structural proteins; because of their variety, prediction tends to become difficult. 
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4. CONCLUSION 

We developed an SVM-based system for predicting LBPs from their sequence. This system is 

intended to provide information to support laboratory experiments. As more data from high-

throughput lipid proteomics becomes available and more knowledge is acquired, the reliability of 

predictions from our systems should improve because SVM performance depends on features 

extracted and training dataset quality. Here, we have described a new feature called PSSD obtained 

from PSSM. PSSD-based prediction for LBPs achieved better performance than the performance 

reported in the previous study. The overall AUC and ACC of prediction for all LBPs were 0.98 and 

93.3%, respectively, which were higher by 0.03 and 4.02 percentage points, respectively, than those 

reported in the previous study [25]. PSSD can be applied to other protein functional predictions and 

is easily applicable to genome-wide predictions because it requires low computation cost. We have 

developed a web server, LBPredictor, to predict LBPs based on this study, available at 

http://www.bi.a.u-tokyo.ac.jp/software/. 

ACKNOWLEDGEMENTS 

We thank Masaki Banno and Wayne Dawson, past members of the Bioinformation Engineering 

Laboratory, for their support and valuable discussion. This study was supported by the Platform for 

Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, 

Sports, Science, and Technology, Japan. 

CONFLICT OF INTEREST 

The authors declare that no competing financial interests exist. 

 

 

 

 

 

 

 

 

 

 

 

http://www.rjlbpcs.com/
http://www.bi.a.u-tokyo.ac.jp/software/


 K. Ueki et al  RJLBPCS 2016   www.rjlbpcs.com        Life Science Informatics Publications 

© 2016 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2016 Jan- Feb RJLBPCS 1(5) Page No.233 

REFERENCES 

1. Bingle CD, and Craven CJ (2004) Meet the relatives: a family of BPI- and LBP-related proteins. 

Trends in Immunology 25 : 53-55 

2. Glatz JFC, Luiken J, van Bilsen M, and van der Vusse GJ (2002) Cellular lipid binding proteins 

as facilitators and regulators of lipid metabolism. Molecular and Cellular Biochemistry 239 : 3-7 

3. Haunerland NH, and Spener F (2004) Fatty acid-binding proteins - insights from genetic 

manipulations. Progress in Lipid Research 43 : 328-349 

4. Furuhashi M, and Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases 

and potential as drug targets. Nature Reviews Drug Discovery 7 : 489-503 

5. Wolfrum C, Borrmann CM, Borchers T, and Spener F (2001) Fatty acids and hypolipidemic drugs 

regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression 

via liver fatty acid binding protein: A signaling path to the nucleus. Proceedings of the National 

Academy of Sciences of the United States of America 98 : 2323-2328 

6. Bingle CD, Bingle L, and Craven CJ (2011) Distant cousins: genomic and sequence diversity 

within the BPI fold-containing (BPIF)/PLUNC protein family. Biochemical Society Transactions 

39 : 961-965 

7. Niggli V (2001) Structural properties of lipid-binding sites in cytoskeletal proteins. Trends in 

Biochemical Sciences 26 : 604-611 

8. Palsdottir H, and Hunte C (2004) Lipids in membrane protein structures. Biochimica Et 

Biophysica Acta-Biomembranes 1666 : 2-18 

9. Reese AJ, and Banaszak LJ (2004) Specificity determinants for lipids bound to beta-barrel 

proteins. Journal of Lipid Research 45 : 232-243 

10. Chen K, Mizianty MJ, and Kurgan L (2011) ATPsite: sequence-based prediction of ATP-binding 

residues. Proteome Science 9 

11. Cui J, Han L, Lin H, Tang Z, Ji Z, Cao Z, Li Y, and Chen Y (2007) Advances in exploration of 

http://www.rjlbpcs.com/


 K. Ueki et al  RJLBPCS 2016   www.rjlbpcs.com        Life Science Informatics Publications 

© 2016 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2016 Jan- Feb RJLBPCS 1(5) Page No.234 

machine learning methods for predicting functional class and interaction profiles of proteins and 

peptides irrespective of sequence homology. Current Bioinformatics 2 : 95-112 

12. Huang C, and Yuan J (2013) Using radial basis function on the general form of Chou's pseudo 

amino acid composition and PSSM to predict subcellular locations of proteins with both single 

and multiple sites. Biosystems 113 : 50-57 

13. Li ZR, Lin HH, Han LY, Jiang L, Chen X, and Chen YZ (2006) PROFEAT: a web server for 

computing structural and physicochemical features of proteins and peptides from amino acid 

sequence. Nucleic Acids Research 34 : W32-W37 

14. Xiong W, Guo Y, and Li M (2010) Prediction of Lipid-Binding Sites Based on Support Vector 

Machine and Position Specific Scoring Matrix. Protein Journal 29 : 427-431 

15. Li L, Cui X, Yu S, Zhang Y, Luo Z, Yang H, Zhou Y, and Zheng X (2014) PSSP-RFE: Accurate 

Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, 

Physical-Chemical Property and Functional Annotations. Plos One 9 

16. Rao HB, Zhu F, Yang GB, Li ZR, and Chen YZ (2011) Update of PROFEAT: a web server for 

computing structural and physicochemical features of proteins and peptides from amino acid 

sequence. Nucleic Acids Research 39 : W385-W390 

17. Ahmad S, and Sarai A (2005) PSSM-based prediction of DNA binding sites in proteins. Bmc 

Bioinformatics 6:33 

18. Fang C, Noguchi T, and Yamana H (2014) Simplified sequence-based method for ATP-binding 

prediction using contextual local evolutionary conservation. Algorithms for Molecular Biology 9 

19. Kumar M, Gromiha AM, and Raghava GPS (2008) Prediction of RNA binding sites in a protein 

using SVM and PSSM profile. Proteins-Structure Function and Bioinformatics 71 : 189-194 

20. Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, and Jones DT (2004) Predicting metal-

binding site residues in low-resolution structural models. Journal of Molecular Biology 342 : 307-

320 

21. Chen S-A, Ou Y-Y, Lee T-Y, and Gromiha MM (2011) Prediction of transporter targets using 

http://www.rjlbpcs.com/


 K. Ueki et al  RJLBPCS 2016   www.rjlbpcs.com        Life Science Informatics Publications 

© 2016 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2016 Jan- Feb RJLBPCS 1(5) Page No.235 

efficient RBF networks with PSSM profiles and biochemical properties. Bioinformatics 27 : 

2062-2067 

22. Kumar M, Gromiha MM, and Raghava GPS (2011) SVM based prediction of RNA-binding 

proteins using binding residues and evolutionary information. Journal of Molecular Recognition 

24 : 303-313 

23. Rashid M, Saha S, and Raghava GPS (2007) Support Vector Machine-based method for 

predicting subcellular localization of mycobacterial proteins using evolutionary information and 

motifs. Bmc Bioinformatics 8 

24. Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, Cao ZW, and Chen YZ (2006) Prediction of the 

functional class of metal-binding proteins from sequence derived physicochemical properties by 

support vector machine approach. Bmc Bioinformatics 7 

25. Bakhtiarizadeh MR, Moradi-Shahrbabak M, Ebrahimi M, and Ebrahimie E (2014) Neural 

network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence 

homology. Journal of Theoretical Biology 356 : 213-222 

26. Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, and Chen YZ (2006) Prediction of the functional 

class of lipid binding proteins from sequence-derived properties irrespective of sequence 

similarity. Journal of Lipid Research 47 : 824-831 

27. Huang Y, Niu B, Gao Y, Fu L, and Li W (2010) CD-HIT Suite: a web server for clustering and 

comparing biological sequences. Bioinformatics 26 : 680-682 

28. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, 

Holm L, Mistry J, Sonnhammer ELL, Tate J, and Punta M (2014) Pfam: the protein families 

database. Nucleic Acids Research 42 : D222-D230 

29. Boratyn GM, Schaeffer AA, Agarwala R, Altschul SF, Lipman DJ, and Madden TL (2012) 

Domain enhanced lookup time accelerated BLAST. Biology Direct 7 

30. Wang CC, Fang YP, Xiao JM, and Li ML (2011) Identification of RNA-binding sites in proteins 

by integrating various sequence information. Amino Acids 40 : 239-248 

http://www.rjlbpcs.com/


 K. Ueki et al  RJLBPCS 2016   www.rjlbpcs.com        Life Science Informatics Publications 

© 2016 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2016 Jan- Feb RJLBPCS 1(5) Page No.236 

31. Chang C-C, and Lin C-J (2011) LIBSVM: A Library for Support Vector Machines. Acm 

Transactions on Intelligent Systems and Technology 2 

32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 

P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, and 

Duchesnay E (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning 

Research 12 : 2825-2830 

33. Matthews BW (1975) Comparison of predicted and observed secondary structure of T4 phage 

lysozyme. Biochimica Et Biophysica Acta 405 : 442-451 

34. Leslie C, Eskin E, and Noble WS (2002) The spectrum kernel: a string kernel for SVM protein 

classification. Pac Symp Biocomput  : 564-575 

35. Smith TF, and Waterman MS (1981) Identification of common molecular subsequences. Journal 

of Molecular Biology 147 : 195-197 

http://www.rjlbpcs.com/

