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ABSTRACT: Aim: Proliferating cell nuclear antigen (PCNA) is an ancillary protein that assists in DNA 

replication and DNA repair process. Detection of mutations in PCNA gene or protein could be helpful to 

analyze many disorders relating to DNA replication and repair. In the present study, non-synonymous single 

nucleotide polymorphisms (nsSNPs) generated by missense mutation were studied using different 

computational methods to evaluate the nsSNPs that may be deleterious to PCNA function.Method: The 

missense nsSNPs were retrieved from the database of NCBI and subjected to functional prediction by the 

computational algorithms. The evolutionary conservation data of the PCNA protein was obtained from the 

ConSurf web server. The protein structural analysis for the variants was performed using I-Mutant, SPDB 

viewer and YASARA to check their structural variations and energy minimizations. Results: Out of the 42 

nsSNPs, 5 nsSNPs namely rs780735449 (Q38R), rs1050525 (S39R), rs781573975 (E104G), rs772308650 

(L182W) and rs753494859 (K248N) were identified as deleterious by using different computational 

algorithms. The evolutionary conservation data  revealed that all the high risk nsSNPs positions were highly 

conserved and were either functional or structural residues in the protein. The I- Mutant tool had showed a 

decrease in the protein stability for the five high risk nsSNPs. A deviance in the energy minimization was 

observed for the variants with respect to the native protein. The RMSD (root mean square deviation) and TM 

(template modeling) values predicted that the mutants were structurally similar to the wild type protein. The 

PTM (post translational modifications) analysis using various in silico tools showed that S39R and K248N 

were putative PTM sites and through FTSite it was observed that these two variants were also involved in the 

ligand binding sites.Conclusion: Through the robust use of various in silico tools, five nsSNPs of PCNA 

protein were found to deleterious. Out of them two mutations at 39th and 248th positions (S39R & K248N) are 

to be further validated for their effect on the PCNA protein function. 
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1.INTRODUCTION 

In silico analysis of single nucleotide polymorphism (SNPs) are widely used in present years due to 

wide availability of computational tools. The analysis of SNPs by conventional methods is usually 

robust and time consuming. However, with the recent advances in computational tools and their ease 

of availability, the potential problems of conventional methods can be addressed. The application of 

computational tools in analysis not only makes the process easy but also reduces the cost of 

conventional methods by great fold as a number of tools are available online at a free of cost. The 

present study, the analysis of PCNA SNPs using computational tools is an attempt to understand the 

nature of different SNPs of PCNA using different algorithms which are available online. The study of 

single nucleotide polymorphism helps in understanding the nature of different diseases. About 90% 

of human polymorphisms are formed by single nucleotide variation. However, the nsSNPs with 

missense mutation usually lead to loss of function while in a few instances can cause a gain in protein 

function [1]. There are several instances where SNPs are proved to be involved in disorders like 

sickle cell anaemia, β thalassemia [2,3], rheumatoid arthritis [4] and even in cancer [5,6].PCNA is a 

cyclin protein which functions as a key factor in eukaryotic DNA polymerase [7]. PCNA is a 

ring-shaped protein complex that surrounds the DNA and increases the processivity of DNA 

replicases δ subunit and coordinates the various pathways in DNA replication [8, 9] by encircling and 

freely sliding along the DNA helix by forming a ring of homo trimer. DNA repair and replication is 

the key process in maintaining the integrity of a cell. Apart from DNA repair and replication, PCNA 

is also associated with remodeling of chromatin and in the process, interacts with a large number of 

accessory proteins and thus acts as a protein recruiting platform [10, 11]. PCNA is reported to be 

overexpressed in cancer cells and it is also very often used as a marker of proliferation [12]. In the 

base excision repair pathway, PCNA (A1876G) polymorphisms were found to be associated with 

increased risk of non-small cell lung cancer [13]. It is reported that two mutant forms of PCNA 

formed due to amino acid substitutions cause defects in mismatch repair system. The C22Y mutant 

PCNA protein was found to block MutSα-dependent MMR (mismatch repair) and C81R mutant 
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PCNA protein was found to partially block both MutSα-dependent and MutSβ-dependent MMR [14]. 

Though PCNA is one of the important cyclins in eukaryotic DNA polymerase complex, the SNP 

studies are only limited to Ser228Ile. It was reported that the Ser228Ile mutation caused a large 

conformational change in the protein thereby altering the binding site for PCNA interacting proteins 

[15, 16]. The missense mutation Ser228Ile in PCNA was found to be associated with a 

neurodegenerative phenotype, exhibiting manifestations common to other DNA repair disorders. 

Hence, the present study is an attempt to identify other PCNA SNPs which could be possibly 

detrimental to the functioning of the PCNA. This is done by using different computational 

algorithms. The resulting high risk nsSNPs can be further validated through wet lab experiments. 

2. MATERIALS AND METHODS 

Retrieval of SNPS for PCNA, human   

The protein sequence data on PCNA was collected from National Center for Biological Information 

(NCBI) web site. The SNP data was retrieved from different web based   data sources such as the 

NCBI dbSNP database (https://www.ncbi.nlm.nih.gov/SNP/) and the Ensembl genome browser 

(http://www.ensembl.org/index.html) [17, 18]. 

Evaluation of functional consequences of non-synonymous SNPs 

The nsSNPs retrieved were further subjected to functional prediction using diffferentin silico 

algorithms namely SIFT, Polymorphism Phenotyping 2 (PolyPhen), nsSNPs analyzer, Predictor of 

Human Deleterious Single Nucleotide Polymorphisms (PhD-SNP), SNPs & GO and PMut. SIFT 

server was used to predict the deleterious effects of nsSNPs (http://sift.jcvi. org/). SIFT predicts 

tolerated and deleterious substitutions for every position of the query sequence by using multiple 

alignment information. The SIFT score ≤ 0.05 indicates the damaging effect of nsSNPs on protein 

function [19]. PolyPhen (http://genetics.bwh.harvard.edu/pph2) software utilizes the protein 

sequence as well as the amino acid modified position in protein sequence to predict the effect of 

nsSNP on protein structure and function. The tool assesses the position-specific independent count 

(PSIC) score for every variant and the score difference directly implies the functional consequences 

of nsSNPs on protein function. The mutation is evaluated as “possibly damaging” (probabilistic score 

> 0.15), “probably damaging” (probabilistic score > 0.85) and “benign” (remaining mutations) [20]. 

The nsSNPs analyzer (http://snpanalyzer.uthsc.edu/) uses information contained in the multiple 

sequence alignment and information embodied in the 3D structure to make predictions [21]. 

PhD-SNP (http://snps.biofold.org/phd-snp/phd-snp.html) uses support vector machine (SVM) based 

analyzing method and makes sequence and profile based prediction [22]. SNPs & GO is also a 

SVM-based nsSNPs classifier consisting of a single SVM that draws in input protein sequence, 
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profile and functional information [23]. And lastly PMut (http://mmb.pcb.ub.es/PMut/) is based on 

the use of different kinds of sequence information to label mutations, and neural networks to process 

this data [24]. FASTA sequence of PCNA was given as input and result was based on the differences 

among disease related and neutral variations of protein sequence. Probability score greater than 0.5 

discloses the disease related effect of mutation on the protein function.On the whole six different 

SNP prediction programs were used. nsSNPs predicted to be deleterious by at least 4 different in 

silico algorithms were classified as high risk nsSNPs. Because each algorithm utilizes different 

parameters to assess the nsSNPs, hence,nsSNPs with more positive results in SNP algorithms are 

more likely to be deleterious. 

Conservation Profile of PCNA gene 

To define the conservation pattern, PCNA gene from Homo sapiens (Accession number-CAG46598) 

along with PCNA from two  species belonging to Hominidae family such as Pan troglodytes 

(Accession number- XP_001165515), Gorilla gorillagorilla (XP_004061824), Mesocricetusauratus 

belonging to Cricetidae family (XP_012967724), Caviaporcellus  from Caviidae family 

(XP_003476647), Musmusculus (NP_035175) from Muridae family,  Bostaurus (NP_001029666) 

and  Bison bisonbison (XP_010834739) belonging to  Bovidae family were retrieved from NCBI 

sequence database. The protein sequences thus retrieved from NCBI were aligned using Clustal X 

software version 2.0 [25] and multiple sequence comparison by log-expectation (MUSCLE). 

MUSCLE analysis was performed by the online version (http://www.ebi.ac.uk/Tools/msa/muscle/) 

[26]. Evolutionary conservation of amino acids in the PCNA protein was determined by ConSurf 

server (http://consurf.tau.ac.il/2016/) [27]. The evolutionary conservation was performed by 

maximum likelihood in ConSurf server. 

Prediction of Post - translational modification sites  

Using the UbPred(www.ubpred.org) and BDM-PUB (bdmpub.biocuckoo.org) programs the putative 

ubiquitylation sites were predicted. The lysine residues with a score greater than 0.62 were 

considered ubiquitinated in UbPred. The balanced cut off option was selected for BDM-PUB [28]. 

Using the SUMO plot (http://www.abgent.com/sumoplot) and SUMOsp 2.0 

(http://sumosp.biocuckoo.org/) programs the putative sumoylation sites were predicted. In SUMO 

plot, only high probability motifs with a score of 0.5 were considered sumoylated. For SUMOsp 2.0 

Medium level threshold was selected [29, 30]. Putative phosphorylation sites were predicted using 

GPS 3.0 (http://gps.biocuckoo.org/) and NetPhos 3.1 (http://www.cbs.dtu.dk/services/NetPhos/).  A 

high-level threshold was selected for GPS 3.0. For NetPhos 3.1, serine, threonine and tyrosine 

residues with a score of 0.5 were considered as phosphorylated [31, 32]. The web-server iPTM-mLys, 
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(http://www.jci-bioinfo.cn/iPTM-mLys) the first multi label PTM predictor was used to predict the 

identifying lysine PTM sites [33, 34, 35]. 

Protein Stability and Structural Analysis 

I-Mutant 2.0 (http://folding.biofold.org/imutant/i-mutant2.0.html) is a support vector machine 

(SVM) based tool which predicts the protein stability changes upon nsSNPs. I-Mutant version2 

predicts the Gibbs free energy change (DDG) by subtracting the unfold Gibbs free energy of mutated 

protein from the unfold Gibbs free energy of the wild type protein (DDG or ΔΔG = ΔG mutant – ΔG 

wild type). Prediction of protein stability changes can be performed by use of either protein sequence 

or structure. I-Mutant version 2 also predicts the sign of decrease or increase in Gibbs free energy 

with Reliability Index (RI: 0–10, where 0 is the lowest reliability and 10 is the highest reliability) for 

amino acid change. The value of DDG <0 indicates decrease in protein stability and DDG>0 indicates 

increase in protein stability [36]. For all the nsSNPs submissions the pH and temperature were set as 

7 and 250C respectively. To explore the structural deviances and stability variances between native 

and mutant forms of PCNA proteins the structural analysis was done. The Protein Data Bank (PDB) 

ID 3VKX corresponds to the crystal structure of human PCNA protein. In order to make the 

mutated models of the PCNA for corresponding amino acid substitutions, Swiss-PDB viewer was 

utilized [37]. Swiss-PDB “mutation tool” was utilized to substitute the wild type amino acid with a 

new amino acid. This tool enables the replacement of the native amino acid by the top rotamer of the 

new amino acid. The PDB files generated for all the models were saved.  The TM scores and the root 

mean square deviations of the mutant models with respect to the native PCNA were calculated using 

TM-Align [38]. Further to improve the quality of the predicted models energy minimization studies 

were carried out using YASARA force field minimization tool [39]. To validate the structures 

produced, RAMPAGE server (http://mordred.bioc.cam.ac.uk/∼rapper/rampage.php) was used which 

produces the Phi/Psi Ramachandran plot for the proteins [40]. 

Identification of Ligand Binding Sites by FTSite 

Detection of binding site is important for elucidating the structure-function relationships among 

proteins, protein engineering and drug design. In the present study for the identification of binding 

site FTSite(http://ftsite.bu.edu/) was used. Based on the experimental evidences FTSite predicts the 

ligand binding sites of proteins with 94% accuracy [41]. 

Analysis of protein-protein interactions 

To study the functions of the interactions of proteins at the cellular level, protein-protein interaction 

networks are vital. In the present study, online database resource Search Tool for the Retrieval of 

Interacting Genes (STRING) was used to identify the interactions of PCNA protein with other 
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corresponding proteins [42]. This tool offers exclusive coverage and ease of access to both 

experimental and theoretical interaction information of PCNA. To infer the most suitable interactions 

among the nodes in PCNA protein interaction network, various modes were used such as confidence 

view, evidence view, interactive mode and action view. 

3. RESULTS AND DISCUSSION 

SNP datasets 

The polymorphism data for the PCNA, human gene retrieved from the NCBI dbSNP database and the 

Ensembl genome browser shows that the PCNA gene contains 48 SNPs in 5’ UTR region, 27 SNPs in 

3’UTR region, 745 SNPs in intronic region and 42 missense variants. The results of the function 

prediction of the 42 missense variants subjected to various in silico algorithms are summarized in 

Table 1.  

Table 1. Predicted results for the nssnps in the pcna gene using different in silico algorithms 

Prediction     Number of nsSNPs (%) 

 SIFT PP-2 nsSNP AZ PhD-SNP SNP & GO P Mut 

Deleterious 20 (49) 08 (20) - - - - 

PD - 07(17) - - - - 

Benign 21 (51) 26(63) - - - - 

Disease - - 10 (24) 10 (24) 02 (5) 32 (78) 

Neutral - - 31 (76) 31 (76) 39 (95) 09 (22) 

Percentage of total nsSNPs shown in parentheses for each category. PD: probably deleterious; the in 

silico algorithms used are SIFT, PP-2: Polymorphism Phenotyping 2; nsSNP AZ: nsSNP Analyzer; 

PhD-SNP: Predictor of Human Deleterious Single Nucleotide Polymorphisms; SNP & GO; P Mut. 

Non-synonymous SNP analysis 

Functional consequences of the nsSNPs was analyzed  using the following in silico algorithms: SIFT, 

PolyPhen2, nsSNP analyzer, PhD-SNP, SNP & GO and PMUT (see supplementary Table1). SIFT 

analysis predicted that 20 nsSNPs (49%) are deleterious and 21nsSNPs (51%) are tolerated. 

According to PolyPhen 2 results, 8 nsSNPs (20%) are deleterious, 26 nsSNPs (17%) are benign 

whereas the remaining 7 nsSNPs (63%) are possibly damaging. Both nsSNP analyzer and PhD-SNP 

predicted that 10 nsSNPs (24%) are disease causing and 31 nsSNPs (76%) are neutral. PMUT 

analysis predicted that 32 nsSNPs (78%) are pathological and 9 nsSNPs (22%) are neutral. On the 
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contrary SNP & GO predicted that 2 nsSNPs (5%) are deleterious and 39 nsSNPs (95%) are neutral. 

Here we classified the nsNSPs as high risk oriented if they were predicted to be deleterious by four or 

more in silico SNP prediction algorithms. Out of 41nsSNPs, 5nsSNPs met the mentioned criteria and 

were selected for further analysis. The deleterious predictions for the five nsSNPs are shown in Table 

2. The nsSNPs of PCNA predicted to be deleterious byatleast fourin silico algorithms were 

categorized as high risk nsSNPs. The decimal 0.5 indicates that the nsSNP is possibly deleterious 

rather than probably deleterious which is considered as 1. 

  Table 2. Prediction of deleterious nssnps in the pcna gene. 

nsSNPs ID Mutation Number of deleterious   predictions 

 

rs780735449  

 

 

Q38R 

 

 

5 

 

rs1050525           

 

 

S39R 

 

 

5.5 

 

rs781573975  

 

 

E104G 

 

 

5 

 

rs772308650    

 

 

L182W 

 

 

5 

 

rs753494859  

 

 

K248N 

 

 

4 

Conservation profiling 

Conservation of amino acids in a protein play an important role in protein structure and function 

thereby in all the cellular metabolisms. Most of the conserved amino acids are buried in the protein 

structure while the most of the non-conserved amino acids are exposed [43]. Mutagenesis of 

conserved amino acids leads to lethal effect [44]. Due to this reason, conservation pattern of amino 

acids in the PCNA protein was studied using ConSurf web browser. Highly conserved residues are 

predicted to be either structural or functional based on their position relative to the protein surface 

[45]. We focused on amino acid sites that coincide in location with the 5 high-risk nsSNPs and they 

were found to be highly conserved (Table 3; Supplementary figure 1). To further evaluate the 
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sequence conservation of the protein, the multiple sequence alignment data was generated from 

Clustal X and MUSCLE. Both the servers generated same sequence alignment (Figure 1) The 

Percentage Identity Matrix for the 8 species was generated using MUSCLE (Table 4). 

Table 3. Conservation analysis with consurf: 

Amino acid position Conservation Score Conservation pattern MSA result 

Q38 9 Highly Conserved 

and Exposed (f) 

Conserved across 

given species 

S39 9 Highly Conserved 

and Buried (s) 

Conserved across 

given species 

E104 9 Highly conserved and 

exposed (f) 

Conserved across 

given species 

L182 9 Highly Conserved 

and Buried (s) 

Conserved across 

given species 

K248 9 Highly Conserved 

and Exposed (f) 

Conserved across 

given species 

It represents the conservation score of different amino acid residues calculated by ConSurf. 

Conservation score (1–4 = variable, 5 = average, 6–9 = conserved); (f): predicted functional site, (s): 

predicted structural site.MSA - Multiple Sequence Alignment  

 

Mus             1MFEARLIQGSILKKVLEALKDLINEACWDVSSGGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Mesocricetus    1MFEARLVQGSILKKVLEALKDLINEACWDISSGGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Cavia           1MFEARLVQGSILKKVLEALKDLINEACWDISSGGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Homo            1MFEARLVQGSILKKVLEALKDLINEACWDISSSGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Gorilla         1MFEARLVQGSILKKVLEALKDLINEACWDISSSGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Pan             1MFEARLVQGSILKKVLEALKDLINEACWDISSSGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Bos             1MFEARLVQGSILKKVLEALKDLINEACWDISSSGVNLQSMDSSHVSLVQLTLRSEGFDTY 

Bison           1MFEARLVQGSILKKVLEALKDLINEACWDISSSGVNLQSMDSSHVSLVQLTLRSEGFDTY 

 

Mus            61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

Mesocricetus   61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

Cavia          61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

Homo           61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 
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Gorilla        61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

Pan            61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

Bos            61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

Bison          61RCDRNLAMGVNLTSMSKILKCAGNEDIITLRAEDNADTLALVFEAPNQEKVSDYEMKLMD 

 

Mus           121LDVEQLGIPEQEYSCVIKMPSGEFARICRDLSHIGDAVVISCAKNGVKFSASGELGNGNI 

Mesocricetus  121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

Cavia         121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

Homo          121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

Gorilla       121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

Pan           121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

Bos           121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

Bison         121LDVEQLGIPEQEYSCVVKMPSGEFARICRDLSHIGDAVVISCAKDGVKFSASGELGNGNI 

 

Mus           181KLSQTSNVDKEEEAVTIEMNEPVHLTFALRYLNFFTKATPLSPTVTLSMSADVPLVVEYK 

Mesocricetus  181KLSQTSNVDKEEEAVAIEMNEPVQLTFALRYLNFFTKATPLSPTVTLSMSADVPLVVEYK 

Cavia         181KLSQTSNVDKEEEAVTIEMNEPVQLTFALRYLNFFTKATPLSPTVTLSMSADVPLVVEYK 

Homo          181KLSQTSNVDKEEEAVTIEMNEPVQLTFALRYLNFFTKATPLSSTVTLSMSADVPLVVEYK 

Gorilla       181KLSQTSNVDKEEEAVTIEMNEPVQLTFALRYLNFFTKATPLSSTVTLSMSADVPLVVEYK 

Pan           181KLSQTSNVDKEEEAVTIEMNEPVQLTFALRYLNFFTKATPLSSTVTLSMSADVPLVVEYK 

Bos           181KLSQTSNVDKEEEAVAIEMNEPVQLTFALRYLNFFTKATPLSPTVTLSMSADVPLVVEYK 

Bison         181KLSQTSNVDKEEEAVAIEMNEPVQLTFALRYLNFFTKATPLSPTVTLSMSADVPLVVEYK 

 

Mus           241 IADMGHLKYYLAPKIEDEEAS 

Mesocricetus  241 ISDMGHLKYYLAPKIEDEEGS 

Cavia         241 ISDMGHLKYYLAPKIEDEEGS 

Homo          241 IADMGHLKYYLAPKIEDEEGS 

Gorilla       241 IADMGHLKYYLAPKIEDEEGS 

Pan           241 IADMGHLKYYLAPKIEDEEGS 

Bos           241 IADMGHLKYYLAPKIEDEEGS 

Bison         241 IADMGHLKYYLAPKIEDEEGS 

Figure1. Multiple Sequence Alignment of PCNA generated by Clustal X and MUSCLE 
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It represents the Multiple Sequence Alignment of PCNA protein of 8 different species. This was 

carried out by using multiple sequence comparison by log-expectation (MUSCLE) and Clustal X. 

Human PCNA sequence was take as reference. The regions highlighted in black represent the 

conserved regions. 

Table 4. Percent identity matrix (pim) generated by muscle 

 Mus Mesocricetus Cavia Homo Gorilla Pan Bos Bison 

Mus 100.00 96.93 97.32 96.93 96.93 96.93 96.93 96.93 

Mesocricetus 96.93 100.00 99.62 98.47 98.47 98.47 99.23 99.23 

Cavia 97.32 99.62 100.00 98.85 98.85 98.85 98.85 98.85 

Homo 96.93 98.47 98.85 100.00 100.00 100.00 99.23 99.23 

Gorilla 96.93 98.47 98.85 100.00 100.00 100.00 99.23 99.23 

Pan 96.93 98.47 98.85 100.00 100.00 100.00 99.23 99.23 

Bos 96.93 99.23 98.85 99.23 99.23 99.23 100.00 100.00 

Bison 96.93 99.23 98.85 99.23 99.23 99.23 100.00 100.00 

Prediction of putative post translational modification sites in PCNA  

The Post Translational Modifications (PTMs) play a key role in regulating activity, localization, 

stability of proteins and also interaction of proteins with other cellular molecules [46]. The 

deregulation of PTMs also has a role in tumorigenesis [47]. Hence we investigated the PTMs in 

PCNA protein and for this purpose we used a variety of in silico tools to predict the putative PTM 

sites in the PCNA protein. To identify amino acid that might undergo phosphorylation we used GPS 

3.0 and NetPhos 3.1 servers. The GPS 3.0 predicted that there were 7 serine specific 

phosphorylation sites and 1 threonine specific and no tyrosine specific sites in the PCNA protein. 

Conversely NetPhos 3.1 predicted that there were 13 serine specific phosphorylation sites and 9 

threonine specific and 3 tyrosine specific sites in the PCNA protein. Among the 13 serine specific 

phosphorylation sites predicted by NetPhos 3.1 server Serine at position 39 occupies a place 

indicating that the mutant S39R will be devoid of this putative phosphorylation site (Table 5).In 

addition to phosphorylation we also screened the PCNA protein for the putative sumoylation, 

ubiquitylation and acetylation sites. To analyze residues in PCNA that may undergo sumoylation or 

ubiquitylation we used the SUMO-plot, SUMOsp 2.0, BDM-PUB and UbPred programs. 

SUMO-plot predicted that 4 lysine residues undergo sumoylation whereas SUMO sp 2.0 predicted 

that only 3 residues undergo sumoylation. BDM-PUB predicted that 6 lysine residues undergo 

ubiquitylation whereas UbPred predicted that 4 residues undergo ubiquitylation. The amino acid at 

position 164 was predicted to be a putative ubiquitylation site by both the servers. Similarly 
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iPTM-mLys server was used to predict lysine PTM sites and the analysis revealed that there were 15 

acetylation sites. Among them lysine at position 248 occupies a place and the mutant K248N might 

be at loss of this PTM site (Table 6). 

 

Table 5. Putative phosphorylation sites in pcna protein. 

GPS 3.0 Net Phos 3.1 

Serine Threonine Tyrosine Serine Threonine Tyrosine 

134 196 - 10 51 60 

170   32 59 114 

183    39* 73 133 

261   46 89  

112   112 98  

223   141 185  

261   152 196  

   183 219  

   186 224  

   222   

   228   

   230   

   261   

The * indicates the position of high risk nsSNPs. 
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Table 6. Putative sumoylation, ubiquitylation and acetylation sites in pcna protein. 

Sumoylation Ubiquitylation Acetylation 

SUMO plot SUMOsp 2.0 BDM-PUB UbPred iPTM-mLys 

139  13  14  164 13 

166  190  20  181 14 

257  254  80  190 20 

192   138  254 77 

  164   80 

  168   110 

    117 

    164 

    181 

    168 

    190 

    217 

    240 

     248* 

    254 

The * indicates the position of high risk nsSNPs. 

Protein stability and Structural analysis of high-risk non-synonymous SNPs  

Protein Stability: I-mutant is a SVM based tool that predicts the protein stability changes upon single 

point mutations taking protein sequence or structure (PDB format) as an input.  The prediction of 

stability changes of selected 5 nsSNPs by IMutant2.0 is given in Table 7. The results are predicted 

to either increase or decrease the free energy change upon amino acid substitutions. All the selected 

nsSNPs showed DDG value less than 0 suggesting decreased protein stability. 

Table 7. Protein structural stability based on standard free energy change in pcna nssnps. 

Mutation pH Temperature Stability DDG(kcal/mol) 

 

RI RSA 

Q38R 7 25 °C Decrease    -1.44 7 13.4 

S39R 7 25 °C Decrease    -1.22 5 18.8 

E104G 7 25 °C Decrease    -2.17 9 14.9 

L182W 7 25 °C Decrease    -0.26 8 17.5 

K248N 7 25 °C Decrease    -0.86 2 22.4 
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DDG: free energy change value between wild and mutant, sign of DDG indicates the direction of 

the change (increase or decrease); RI is the reliability where 0 is the lowest RI and 9 is the highest; 

RSA: relative surface accessibility. The five predicted deleterious and disease causing mutants were 

mapped to the PDB ID 3VKX native structure. Further, to generate mutated model structures for the 

five variants, substitution of corresponding amino acid residues was carried out using Swiss-PDB 

Viewer individually. We further calculated the RMSD and Tm score for the Q38R, S39R, E104G, 

L182W and K248N variants. RMSD measures the average distance between the alpha carbon 

backbones of the wild type and mutant proteins whereas TM score indicates the topological 

similarity between the two protein structures [38]. The greater is the RMSD value, the more is the 

discrepancy between the two structures. It can be seen from Table 8 that the RMSD values between 

the native structure and the mutant modeled structures are all similar suggesting that these 

mutations do not bring a significant variation in the mutant structures with regard to the native 

protein structure. 

Table 8. RMSD Values And TM Score Of Mutant Modeled Structures Of PCNA Protein. 

Variant RMSD TM score 

Q38R 0.00 1.00 

S39R 0.00 1.00 

E204G 0.00 1.00 

L182W 0.00 1.00 

K248N 0.00 1.00 

Tm-score value scales the structural similarity.TM-score value 1 indicates a perfect match between 

two structures. RMSD is the root mean square deviation. A higher RMSD value indicates greater 

deviation between wild type and mutant structure. Moreover, to this we have subjected the Mutated 

model structure of high-risk nsSNPs to RAMPAGE for model validation. The RAMPAGE analysis 

for the wild type PCNA protein showed that 243 (99.6%) of amino acid residues were found in the 

favored region, 0 (0%) were in the allowed region and 1 (0.4%) residue in the outlier region. The 

results of the Ramachandran plot analysis for each of the high risk nsSNPs model structures is given 

in Table 9. The energy minimizations were achieved by YASARA server for the native protein and 

the five mutant proteins. The total energy for the native type protein structure following energy 

minimization was -148368.7 kJ/mol (score: -0.12) whereas prior to energy minimization it was. 

219601.1kJ/mol (score: -1.32). The total energy before and after energy minimization is given in 
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Table 10. 

Table 9. Rampage analysis 

Model Amino acid residues in 

favored regions 

Amino acid residues in 

allowed regions 

Amino acid residues in 

outlier regions 

 No of 

residues 

% of 

residues 

No of 

residues 

% of 

residues 

No of 

residues 

% of 

residues 

Wild type 243 99.6 0 0 1 0.4 

Q38R 240 92.7 16 6.2 3 1.2 

S39R 236 93.3 13 5.1 4 1.6 

E204G 234 90.3 20 7.7 5 1.9 

L182W 241 93.1 18 6.9 0 0 

K248N 240 92.7 16 6.2 3 1.2 

 

Table 10. Total energy of native and mutant pcna structures before and after energy 

minimization. 

Amino acid variants Total energy before energy 

minimization (kj/mol) 

Total energy after energy 

minimization (kj/mol) 

Native  219601.1 -148368.7 

Q38R 219678.8 -147934.5 

S39R 220340.7 -148904.2 

E104G 220275.7 -147361.4 

L182W 238179.5 -146881.8 

K248N 220499.3 -150222.4 

 

Analysis of Ligand Binding Sites and Protein-Protein Interactions 

FT Site recognizes 3 ligand binding sites on PCNA protein. The amino acids found in these 3 sites 

of PCNA protein are given in Table 11. By the results of FT Site, it is observed that out of 5 selected 

variants Q38 & S39 are involved in the ligand binding site 2 whereas K248 is found to be involved 

in ligand binding at site 3.  
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Table 11. Residues at ligand binding sites of PCNA protein. 

Site 1 Site 2 Site 3 

MET A 40 LEU A 22 GLN A 49 

VAL A 45 ILE A 23 ILE A 128 

SER A 46 ASN A 24 HIS A 246 

LEU A 47 GLU A 25 LYS A 248* 

LEU A 126 ALA A 26 TYR A 250 

GLY A 127 CYS A 27  

ILE A 128 GLN A 38*  

PRO A 129 SER A 39*  

GLU A 130 MET A 40  

GLN A 131 ASP A 41  

TYR A 133 SER A 42  

PRO A 234 HIS A 44  

VAL A236 LEU A 121  

LYS A 248 VAL A 123  

TYR A 250   

LEU A 251   

ALA A 252   

The * indicates the position of high risk nsSNPs 

STRING database predicted that the functional interaction pattern of PCNA protein to other 

proteins in a cell. Strong functional associations of the PCNA protein have been observed with 

FEN1, RFC3, RFC4, RFC5, RFC1, POLH, POLD1, LIG1, CDKN1A and MSH6 (Figure 2).  
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Figure2. PCNA protein-protein interactions in action view. 

PCNA interacts with FEN1 (Flap structure specific endonuclease 1), RFC3 (Replication factor C 3), 

RFC4 (Replication factor C 4), RFC5 (Replication factor C 5), RFC1 (Replication factor C 1), POLH 

(Polymerase DNA, eta), POLD (Polymerase DNA, delta), LIG1(Ligase 1), CDKN1A 

(Cyclin-dependent kinase inhibitor 1A) and MSH6 (mutS homolog 6).Strong association pattern is 

shown by thick blue lines and weak association in the form of thin blue lines. 

DISCUSSION 

The Single Nucleotide Polymorphisms (SNPs) account for the major cause of variations in humans. 

Up till now millions of SNPs could be found on NCBI SNP database but due to degeneracy of 

amino acids and natural selection, many of them do not pose any significant change on protein 

structure or function. Therefore, it is necessary to distinguish between the functionally neutral and 

disease associated polymorphisms. As it is difficult to choose and study the SNPs which are more 

likely to contribute in disease development hence in this condition in silico approach is a convenient 

way to distinguish the damaging SNPs using specific algorithms that can discriminate between 

neutral and deleterious SNPs [48].Hence an effort was made to identify SNPs that can modify the 

structure, function and expression of the PCNA gene. As most of the disease associated SNPs are 

found in the exons or coding regions, also known as non-synonymous SNPs [49,50] in our study we 
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have submitted the 42 nsSNPs of PCNA to various in silico SNP characterizing tools and out of 

these 42 nsSNPs, 5 nsSNPs (Q38R, S39R, E104G, L182W and K248N) were found to be damaging. 

For evaluating the harmful effects of the high risk SNPs, we predicted the evolutionary 

conservation profile of the PCNA gene using the ConSurf server which also identifies the functional 

regions in the protein [51]. We found that 3 of the high risk nsSNPs (Q38R, E104G and K248N) 

were identified as important exposed, functional residues and are highly conserved whereas the 

other two nsSNPs (S39R and L182W) were identified as highly conserved structural, buried 

residues. This suggests that the high risk nsSNPs may alter the structure and function of the PCNA 

protein. To further validate we performed the multiple sequence alignments for the human PCNA 

protein with the PCNA from seven different species using CLUSTALX and MUSCLE software. 

The alignment generated for the PCNA protein was found to be similar throughout the eight species 

indicating that the PCNA protein is conserved throughout the selected species. PCNA is subjected to 

PTMs viz phosphorylation, sumoylation, acetylation and ubiquitilation. Posttranslational protein 

modifications (PTMs) basically alter the functions of their target proteins by blocking, creating or 

modifying the interaction areas. These modifications thereby translate the modification of the target 

protein into biological action by affecting the interaction between their targets and other cellular 

factors or proteins [52]. Mutations in the post translational target sites leading to gain or loss of the 

PTMs may be involved in the human diseases [53, 54]. We investigated the putative PTM sites in 

the PCNA protein and found that Serine at 39th position was a recognizable phosphorylation site 

whereas lysine at 248th position was the putative acetylation site. Thus, mutations at these positions 

lead to loss of PTM sites and may play a role in disease manifestation [55]. Amino acid 

substitutions can possibly disturb the ligand binding positions that are important in protein function 

and may lead to modifications in the protein stability and structure [56]. The DDG stability 

predictions and RSA calculations performed using the I Mutant 2.0 software indicate that the 

selected mutations decreased the protein stability. We further compared the RMSD values of the 

mutants and the wild type model and they were found to be similar. Therefore, it could be proposed 

that these mutations do not bring about any significant alteration in the mutant structures with 

regard to the native protein structure. We also performed energy minimization calculations and 

observed that the five mutant modeled structures exhibited deviation from native structures before 

and after energy minimization. Q38R, E104G and L182W mutants showed increase in free energy 

(less favorable change) after minimization whereas S39R and K248N showed decrease in free 

energy in comparison to the native structure. We have analyzed the ligand binding sites of the 

PCNA protein and found that out of the five high risk nsSNPs only three nsSNPs sites namely Q38, 
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S39 and K248 are involved in the ligand binding sites. In addition to this through STRING database 

we have observed that the PCNA protein shows strong associations with the FEN1, RFC1, RFC3, 

RFC4, RFC5, POLH, POLD1, LIG1, CDKN1A and MSH6. Since Q38, S39 and K248 are a part of 

different ligand binding sites and as PCNA protein shows interaction with a lot of other proteins, 

this implies that mutations at 38, 39 and 248 may alter the association of the PCNA with any of its 

interacting proteins. As mentioned earlier few polymorphisms of PCNA are associated with lung 

cancer, neurodegenerative disorders and DNA repair disorders. However, there was no study that 

reported the association between these deleterious nsSNPs (rs780735449, rs1050525, rs781573975, 

rs772308650 and rs753494859) and incidence of any disorders. Hence the validation of these high 

risk nsSNPs in any disease is required to complement the existing limited body of knowledge. The 

analysis of nsSNPs in the PCNA gene by using computational methods would help in the 

establishment of their effects on the protein functional characteristics. Precisely this in silico 

approach permits the estimation of probability of amino acid changes which can be detrimental for 

the PCNA protein functions.  

4. CONCLUSION 

By utilizing the publicly available databases we could sort out the nsSNPs which could be possibly 

dangerous to the functioning of the PCNA. This is evident through the PTM and ligand binding 

analysis. These high risk nsSNPs should be further validated by wet laboratory experimentation. 
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SUPPLEMENTARY FILES 

Supplementary Table 1. SNP PREDICTIONS FOR ALL THE PCNA NSSNPS. 
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Supplementary Figure 1: Prediction of putative functional and structural residues by Consurf 

for the PCNA protein. 

 

 

e - An exposed residue 

b - A buried residue 

f - A predicted functional residue (highly conserved and exposed) 

s - A predicted structural residue (highly conserved and buried) 
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