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ABSTRACT: Protein structure determination from experimental NMR spectroscopic data, 

Comparative Modeling and Protein Design require a search for low energy conformations with 

specific spatial relationships between different segments of the same molecule. Generation and 

characterization of the range of molecular conformations that are consistent with a specified set of 

restraints is a challenging problem.  Distance geometry is an efficient method for generation of 

molecular conformations that are consistent with a set of specified distance restraints.  The effects of 

Energy directed generation of trial distance matrix for use in Distance Geometry are investigated in 

this study. Potential Energy directed sampling of distances may direct conformational search towards 

favorable regions of the conformational space.  The use of this method has the potential to improve 

sampling of conformational space and to avoid the tradeoff between the experimental and the 

knowledge based information in structure determination and structure refinement. 
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1. INTRODUCTION 

Enhancing the sampling efficiency of algorithms for conformational analysis has the potential to lead 

to substantial improvements in molecular modeling, protein design and protein structure 

determination [1]. Distance restraints, obtained from protein design specifications or NMR 

spectroscopy experiments, can be used by Restrained Molecular Dynamics, Target Function 

Minimization and Distance Geometry based methods for determination of the three dimensional 

structure of proteins [2-4].  A hybrid Molecular Dynamics-Monte Carlo method (MD-MC) has been 

demonstrated for sampling enrichment towards target structures using small angle X-ray scattering 

(SAXS) intensity profiles [5]. A chemical shift driven genetic algorithm for biased Molecular 

dynamics has been applied for protein structure refinement [6]. Distance geometry can used to 

determine the coordinates of a set of objects based on distance information between the objects of 

interest [7, 8].  The input set of distances may consist of exact distances, or they may be specified in 

the form of distance ranges [9].  In addition, the set of input distances may or may not be sufficient 

for a unique determination of the coordinates of all the objects of interest [10].  Distance geometry 

has been used extensively in biomolecular structure determination and drug design [11, 12], and is 

also useful in other applications such as comparative modeling [13, 14], sensor network localization 

and graph drawing [15, 16].  In most applications of distance geometry for protein structure 

determination, a trial distance matrix is generated after Bounds smoothing [17]. The trial distance 

matrix is then subjected to Embedding [18], Majorization [19, 20] and Structure refinement [21-22].  

Alternative, and potentially more efficient methods for obtaining Euclidean coordinates consistent 

with a specified distance matrix are being investigated [23-24]. Embedding produces a metric matrix 

from a trial distance matrix.  The trial distance matrix has to be generated by choosing a specific set 

of distances consistent with the set of distance bounds, and these trial distances should, if possible, be 

consistent with each other.   The trial distance matrix can be generated by using a distribution 

function or by using triangle correlation or Metrization. Metrization may be full or partial, atomwise 

or pairwise [13, 25].  The choice of an algorithm for generation of the trial distance matrix is 

generally based on a compromise between the requirements of time, the acceptance ratio and global 

properties of the conformational ensemble such as RMSD, radius of gyration and Energy. The 

method of choice of the distribution of distances used for generation of the trial distance matrix is a 

critical factor that determines the properties of the ensemble of structures generated by application of 

Distance Geometry [26].  In the earliest attempts at structure determination by distance geometry, 

trial distances were chosen randomly from the distance bounds. It was observed that such a choice of 

distances results in preferential sampling of extended conformations that are not typical of globular 

proteins.  To overcome this problem, distribution functions were used to pick distances from the 

available range, and the choice of the distribution functions was optimized to produce compact 

conformations [27]. However, a distribution function that is appropriate for a compact globular 
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protein may not be appropriate for fibrous proteins or for other designed macromolecules with 

unusual shapes.  These abstract mathematical distributions may be supplemented or replaced with 

force field or knowledge based Energy functions.  The results of such changes in the distribution of 

trial distances are investigated in this study.  The potential benefits are improved sampling of 

favorable regions of conformational space, without reducing the total conformational search space. 

And the ability to separate the information that directs conformational search from the information 

used to evaluate the fit to experimental data.  

2. MATERIALS AND METHODS 

Deca-Alanine: Distance and Torsional restraints were generated based on values expected for a 

helical conformation [28].  Twenty restraints consisting of 15 torsional and 5 distance restraints were 

used, corresponding to a mean value of 2 restraints per residue.  The distances between 5 pairs of 

backbone C atoms separated by four residues, were assigned lower bounds of 1.86A and upper 

bounds of 6.76A.  The bounds for torsional angle phi were specified as -80.0o and -40.0o, for all 

residues except the first and last residues.  The bounds for torsional angle psi were specified as -60.0o 

and -20.0o for all residues except the first and last two residues. A helical conformation of 

Deca-Alanine was generated by using PyMOL (Schrodinger Inc.) for use as a reference.  The energy 

minimization was carried out by using the 2008 parameter set of OPLS force field  of Jorgensen et 

al. [29], with implicit solvation based on a Generalized Born – Solvent Accessible Surface Area 

model (GB-SA)  available in the Tinker package (J. Ponder, 2017). 

PPM-DG: The Distance Geometry algorithm with Partial Pairwise Metrization, implemented in the 

Tinker package, was used without any further modification, as a reference (Ponder, 2017).  Distance 

matrices were generated with 5% random Pairwise Metrization. 

EDD-PPM-DG (PPM-DG with Energy Directed generation of trial Distances): The implementation 

of the Distance Geometry for partial pairwise Metrization in the Tinker package was modified as 

follows. The trial distance used for the pairwise partial metrization was used to evaluate the 

Lennard-Jones potential energy by using the OPLS force field parameters.  The calculated energy 

value was used to evaluate the Boltzmann factor (exp(-E/RT)) and this value was compared to a 

random number between 0 and 1.  If it exceeded the random number then the trial distance was 

retained.  Otherwise, a new random trial distance was generated within the applicable distance 

bounds, and a new value of the Boltzmann factor was calculated and compared to a new random 

number.  The process was repeated for a maximum of 100 times.  If the calculated value of the 

Boltzmann factor did not exceed the random number after 100 attempts, the initial value of the trial 

distance was retained.  The trial temperature was set to 298K for all tests.  All other protocols and 

parameters were chosen to be the same for PPM-DG and EDD-PPM-DG. 

Evaluation of the conformational ensembles:  The Distance Geometry program in the Tinker 

package uses a simplified forcefield for the target function that is optimized after the Embed step,  
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and this was not altered in the implementation of the Distance Geometry described in the current 

study.  The mean values of the target function calculated after the final optimization step are listed in 

the table as “Mean value of DG error function.” The radius of gyration values were calculated with 

the GYRATE subroutine of the Tinker package (Ponder, 2017). The force field based energy and the 

residual restraint violations in the models generated with the Distance Geometry program were 

evaluated with the 'Analyze' tool in the Tinker package [30, 31]. The OPLS forcefield available in the 

Tinker package was used with implicit solvation (GB-SA).   

Calculation of RMSD: Pairwise RMSD and ensemble RMSD for backbone CA atoms was evaluated 

by using the 'fit' and 'align' commands in PyMOL, and custom python scripts.  The calculation of 

ensemble RMSD average and the average of pairwise RMSD from reference conformation was 

performed by using LibreOffice-Calc version 4.2.8.2.    

3. RESULTS AND DISCUSSION 

Distance geometry was used to generate 100 conformations for Deca-Alanine using PPM-DG as well 

as EDD-PPM-DG.  The conformational properties of this ensemble of conformations have been 

assessed by several methods (Table 1).  Although the mean value of the target function for the 100 

conformations was the same for both methods, the number of conformations with zero residual 

violation of input restraints was higher in EDD-PPM-DG than in PPM-DG, indicating the potential 

superiority of the method described in this work.  Furthermore, the mean value of the restraint 

violations as well as the conformational energy evaluated with OPLS force field was lower for 

EDD-PPM-DG, indicating that the restraints satisfaction improvement was obtained without 

compromising the structural parameters that determine the potential energy. There was a small 

increase in the mean value of the radius of gyration for conformations generated with EDD-PPM-DG, 

and this is likely if the ensemble includes a higher proportion of helical conformers.  This conclusion 

is supported by the observation that the mean value of the RMSD from the reference helical 

conformation was lower for the ensemble generated with EDD-PPM-DG.  There was a small 

decrease in the mean value of the pairwise RMSD for the ensemble of conformations generated with 

EDD-PPM-DG compared to the standard method, presumably because more of the conformations 

generated by this new method satisfy the restraints which restrict the conformational space. 
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Table 1 

Comparison of the conformational ensemble generated by pairwise partial metrization (PPM-DG) 

and the conformational ensemble generated by energy directed sampling of distances 

(EDD-PPM-DG) for Deca-Alanine 

 

 PPM-DG EDD-PPM-DG 

Mean value of DG error function 0.25 (0.26) 0.25 (0.30) 

Number of conformations with 

zero restraint violations 

28 35 

Mean value of restraint violation* 0.085 (0.13) 0.059 (0.07) 

Mean value of conformational 

energy 

1.02 (169) -4.15 (184) 

Mean value of Radius of Gyration* 

(A) 

5.20 (0.29) 5.29 (0.27) 

Mean value of RMSD from a 

reference helical conformation of 

Deca-Alanine 

1.47 (0.98) 1.34 (0.87) 

Mean value of Pairwise RMSD*  2.09 (1.14) 1.90 (1.09) 

Note: The calculated values of standard deviation are given in parenthesis. Asterisk indicates that 

there is a significant difference based on a T-test with P-value less than 0.05. 

A 10 residue polypeptide, Deca-Alanine has been used to demonstrate the feasibility of using Energy 

directed distribution of distances for the generation of the trial distance matrix, in the application of 

Distance Geometry for structure determination. EDD-PPM-DG can be tuned further by optimizing 

the temperature used in the Boltzmann factor.  In addition, the sampling can be altered by the use of 

a constant offset to the potential energy used in calculation of the Boltzmann factor.  However, in 

this study, no offset was applied and the behavior of the algorithm was investigated at only one 

temperature (298 K).  Parameter optimization and the use of additional or alternative terms for force 

field based energy and Potential of Mean Force are currently under investigation and will be 

described elsewhere. The restraint set used in this study may be considered to be representative of the 

restraint sets available in the early stages of structure determination by NMR spectroscopy. In the 

early stages of the NMR structure determination process only a limited number of restraints are 

available.    In some cases, such as large proteins, additional restraints cannot be obtained due to 

limitations of spectral quality [32].  In such cases, as well as in molecular modeling and protein 

design applications, the properties of the conformational ensemble are expected to be sensitive to the 
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force field used for conformational analysis. The torsional conformational preferences of amino acid 

residues can be used to refine structures generated by NMR spectroscopy by incorporating this 

information into a potential of mean force [33]. If a potential of mean force is used, a compromise 

may be necessary between the requirements of satisfaction of experimental restraints and the 

expected distribution of bond lengths, bond angles, torsional angles and non-bonded interactions. 

Methods such as Steered Molecular Dynamics [1], incorporation of sampling enrichment schemes 

into Molecular Dynamics calculations [5], or the use of EDD-PPM-DG have the potential to alleviate 

such problems.     

4. CONCLUSION 

The EDD-PPM-DG method, described in this study, can use information regarding the interaction 

energy from a force field or from a potential of mean force to alter the distribution of distances used 

for generation of the trial distance matrix, without changing the distance bounds. Therefore, 

conformational search can be directed towards favorable regions of conformational space without 

explicit restrictions on the conformational space to be searched.    
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