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ABSTRACT: Protein–protein interactions (PPIs) play an essential role in various biological processes. A 

range of computational methods have been proposed to predict PPIs from protein sequences. Among these, 

homology-based methods and machine-learning methods have been widely used. However, to the best of our 

knowledge, these two methods have not been compared using the same dataset. Thus in this study, we have 

developed both homology-based and machine-learning methods to predict PPIs from amino-acid sequences 

and compared the prediction results. In the homology-based method, BLASTP search was used to identify 

sequence homology. Regarding the machine-learning methods, two popular methods, support vector machine 

and random forest, as well as six different protein features, were employed to build classifiers. We collected 

the PPI pairs with high-confidence scores from HitPredict4 to build the positive dataset and we built the 

negative dataset from the Negatome 2.0 database, in which non-interacting pairs were verified by experiments 

and 3D structure analysis. Our results show that machine-learning methods achieved better performance than 

homology-based method but there are many PPIs that are predicted only by the homology-based method. The 

integration of the two methods is expected to enhance the performance. 
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1.INTRODUCTION 

Protein–protein interactions (PPIs) play an essential role in various biological processes and functions 

in living cells, such as metabolic cycles, gene regulation, and signal transduction [1–3]. Thus, 

identification of PPIs is critical to understanding the protein functions. Over the past few decades, 

many experimental techniques, such as yeast two-hybrid systems (Y2H) [4], mass spectrometry (MS) 

[5], tandem affinity purification (TAP) [6], and protein chip [7], have been developed to detect PPIs. 

These experimental approaches have provided an enormous amount of PPI data, which have 

facilitated the development of PPI databases such as IntAct [8], BioGRID [9], and HPRD [10]. 

However, conducting experiments is labor-intensive and time-consuming [11], and the PPI networks 

are still incomplete [12]. To overcome these limitations, bioinformatics methods are expected to be 

useful for identifying PPIs in functional proteomics. Various computational methods have been 

proposed to predict PPIs, which include genomic context-based methods [13–17], structure-based 

methods [18–21], and sequence-based methods [22–32]. Genomic context-based methods such as 

gene-cluster and gene-neighbor methods are based on the search of pairs of genes that show a 

correlated position or behavior; these genes are assumed to encode proteins that interact with each 

other [13]. As an example of genomic context-based methods, the phylogenetic profile method 

constructs a phylogenetic profile of proteins with a binary vector that represents their presence or 

absence across many organisms. Two proteins shown to have similar profiles by this approach may 

be functionally related or may interact [14,15]. The gene-fusion method [16] is based on the 

observation that some single-domain proteins in an organism can fuse to form multidomain proteins 

in other organisms. This indicates that functionally associated proteins are likely to form a protein 

complex [17]. Structure-based methods, such as Struct2Net [18], thread protein sequences to all the 

protein complex structures from the PDB database. Based on the matched structures, logistic 

regression is used to evaluate the probability of two proteins interacting. PRISM [19] is a template-

based method that compares the two sides of the template complex interface with the surfaces of two 

target monomers in terms of structural alignment. If regions of the target surfaces are similar to the 

sides of the template interface, these two targets are predicted to interact with each other. Other 

methods, such as PrePPI [20], predict PPIs by structural alignment combined with secondary 

structures, while MEGADOCK [21] employs docking simulation to draw inferences on PPIs. The 

above approaches rely on an abundance of information being available. In the genomic context-based 

methods, the performance depends on the number and diversity of genomes. It is difficult to predict 

PPIs of the proteins specific to only one organism. When the structures of the target proteins are 

known, structure-based methods can achieve high accuracy. However, if modeled structures are used, 

additional computational time is required and prediction accuracy depends on the model quality. 

Apart from these methods, sequence-based methods have shown the advantage of generalization 

because they require information only from amino-acid sequences. Many sequence-based methods 
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have been proposed and the majority of them use machine-learning techniques for building classifiers. 

For example, support vector machine (SVM) [33] is an efficient machine-learning algorithm used to 

identify PPIs. As one example of an SVM approach, Martin et al. [22] developed a novel descriptor 

called signature product to predict PPIs. The signature product is implemented within SVM as a 

kernel function and accuracy of 69% could be obtained and applied to a full-yeast dataset from the 

DIP database. Shen et al. [23] also employed SVM to predict PPIs. In Shen’s study, the 20 amino 

acids were clustered into seven classes according to their dipoles and volumes of their side chains, 

and then the triads of the classes of adjacent residues were taken as input features for SVM. When 

applied to predict human PPIs, this method shows good performance with 83.9% accuracy. Guo et al. 

[24] used an autocovariance model for feature extraction where autocovariance of the indexes 

representing the physicochemical properties of each amino acid was calculated. This method 

achieved 87.36% accuracy by SVM under the yeast-core dataset in DIP [25]. Another popular 

machine-learning method—random forest (RF) [34]—has also been employed in PPI research. For 

example, Zahiri et al. [26] attempted to combine the position-specific scoring matrix (PSSM) feature 

with other features, such as post-translational modifications and tissue information, to predict PPIs. 

Four different classifiers—RF, naïve Bayes (NB), multilayer perceptron, and radial basis function 

network (RBF)—were applied to prediction. From the prediction results, the RF classifier showed 

the best performance among these four classifiers. In addition, You et al. [27] proposed a novel 

multiscale local descriptor (MLD) feature representation. The MLD feature makes it easier to extract 

multiple continuous binding patterns within a protein sequence. On the basis of the RF classifier with 

MLD, a high performance of 94.72% accuracy in predicting interactions between proteins was 

obtained when applied to the yeast-core dataset in DIP. The homology-based method is also applied 

to predict PPIs from sequences. This method is based on the assumption that two pairs of proteins 

with high sequence similarity may have similar properties. As the number of reliable PPI data 

increases, protein interaction mapping becomes useful for the functional annotation of 

uncharacterized proteins in various species [28]. On the basis of this concept, Yu et al. [29] introduced 

a new generalized mapping method based on sequence similarity. Specifically, they used a total of 

14,911 interactions to investigate the relationships between the sequence similarity and the 

conservation of interaction. They suggested that sequence similarity above a certain threshold might 

be a reliable measure for identifying PPIs. Recently, several web servers, such as PPI-Search [30] and 

BIPS [31], have also been constructed for searching for homologous PPIs based on sequences. These 

services may assist in the identification of pairs of proteins that potentially interact. Among the 

sequence-based methods, the homology-based method depends on the conservation between 

sequences, while the machine-learning method relies on feature extraction and learning algorithms. 

Both methods were implemented individually to predict PPIs in previous studies, but the evaluation 

has not been made on the same dataset to compare their performance. Furthermore, the reliability of 
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the dataset plays a crucial role in the prediction of PPIs. In this study, we developed both homology-

based and machine-learning methods to predict PPIs from amino-acid sequences. In the homology-

based method, BLASTP search was used to identify sequence homology. BLASTP is a BLAST (Basic 

Local Alignment Search Tool) program for searching protein databases. In our analysis, NCBI 

BLAST 2.2.29+ was used. Regarding machine-learning methods, two popular methods, SVM and 

RF, as well as six different protein features, were employed to build classifiers. These methods give 

theoretical background and they have achieved good performances in previous studies as described 

in “Introduction”. We collected highly confident positive pairs from HitPredict4 [34] to build the 

positive dataset. Regarding the collection of the negative dataset, it is still a challenge to ensure the 

high reliability of results asserting that certain pairs of proteins do not interact. In many previous 

studies, negative datasets were generated by randomly mapping proteins that appeared in the positive 

dataset or selecting protein pairs that have different subcellular localizations. In contrast, in this study, 

we built the negative dataset from the Negatome 2.0 database [36], in which non-interacting pairs 

were verified by experiments and 3D structure analysis. 

2. MATERIALS AND METHODS 

2.1 Materials 

We used HitPredict 4 (version of September 2015) as the positive data source, which provides a 

manually curated dataset of 398,696 physical interactions among 70,808 proteins from 105 species. 

It is reliable resource of experimentally identified, physical protein–protein interactions with 

confidence scores to indicate their reliability [34]. On the basis of the statistical analysis, a method-

based score of >0.485 or an annotation-based score of >0.5 was suggested as thresholds for 

identifying high-confidence interactions. We built a balanced dataset by collecting a suitable number 

of PPIs with efficient cut-off points from HitPredict 4 (398,696 pairs) and Negatome 2.0 (6,136 pairs). 

Since the number of supporting publications can be taken as direct evidence for evaluating the quality 

of PPIs, this was used as a cut-off in our study. All PPI sequences were derived from UniProtKB [37]. 

To ensure the reliability of these sequences, we checked the PE entry for each protein in UniProtKB 

and only retained those that were annotated with “evidence at protein level” or “evidence at transcript 

level.” The two reliable thresholds suggested by HitPredict 4 (method-based score and annotation-

based score) were also used to ensure that the selected PPIs had sufficient evidence supported by 

experiments.We used Negatome 2.0 to build our negative dataset, in which non-interacting protein 

pairs were derived from manual curation of the literature and by analyzing the 3D structures of protein 

complexes. An initial stringent dataset of 6,136 pairs was downloaded from the Negatome 2.0 web 

page and the sequences of these negative pairs were then obtained from the UniProtKB database.In 

both the positive and the negative datasets, we excluded the following pairs: (1) pairs that existed in 

both HitPredict 4 and Negatome 2.0; (2) sequences of <50 amino acids; (3) one of a pair of repeat 

sequences (e.g., A-B and B-A); and (4) sequences containing the amino acid characters B, J, O, U, X, 
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and Z. This resulted in a total of 9,566 interacting pairs and 4,720 non-interacting pairs being collected 

to build our reliable dataset. Since a protein pair was taken as a unit in this study, sequence redundancy 

refers to the redundancy of protein pair sequences. First, we used BLASTClust [38] to cluster all of 

the protein pair sequences with an identity of 40% and coverage of 70%. On the basis of these clusters, 

we then defined the similarity of the protein pairs as follows: let A be a pair of protein A1 and protein 

A2 and B be a pair of B1 and B2; if (A1, B1) and (A2, B2) are both in the same respective sequence 

clusters or (A1, B2) and (A2, B1) are both in the same respective sequence clusters, then A and B are 

defined as a similar pair. We then grouped similar protein pairs based on single linkage clustering 

[39]. As a result, we obtained 8,388 clusters where the members were all positive pairs and 3,867 

clusters where the members were all negative pairs. The longest pair (sum of the lengths of proteins 

in the pair is the longest) was taken to be representative of that cluster. Finally, we ranked the 8,388 

positive clusters by the combined interaction score of the representative pairs and selected the top 

3,867 positive pairs as the final positive dataset. All 3,867 representative negative pairs in the negative 

clusters were selected as the final negative dataset. We developed two kinds of methods to predict 

whether a query protein pair interacts or not, based on the amino-acid sequences (Figure 1). 

Figure 1 Homology-based method and machine-learning method. This figure provides an outline of the 

homology-based method and the machine-learning method. 

2.2 Homology-based method 

Homologs are proteins with significant sequence similarity. Here we used the same definition as 

provided in [40], whereby two proteins were considered homologous if they had an E-value 10−10 in 

a BLASTP [37] search. This value is small enough to avoid false-positive detection. We also used the 

joint sequence similarity (JE) [29] to measure the similarity between two protein sequences, 

expressed by:  
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Joint E-value =√𝐸𝐴×𝐸𝐵 

where EA and EB denote the E-values of A and B, respectively. An E-value that is close to 0 indicates 

higher reliability of the homology between two sequences. However, if either of the two sequences 

has an E-value of 0, JE could also be 0, which would overinflate the JE value when the other E-value 

is high. To avoid this, the minimum E-value was assigned as 10−180 rather than 0. In the homology-

based method, we used HINTdb [41] to identify known interactions between PPIs. HINTdb includes 

398,696 physical PPIs, all of which are based on empirical evidence. A total of 70,808 sequences 

registered in HINTdb were employed as a sequence database for determining sequence homology. 

For each protein pair used as a query, we first obtained two homologous lists using BLASTP to search 

for the two sequences in the HINTdb sequence database separately. We then calculated JE for all 

possible combinations of homologous sequences in the two lists and listed the candidate pairs in 

ascending order of JE. A score of “+1” was assigned to candidate pairs that could be found in HINTdb 

and “0” was assigned to all other cases. Finally, we predicted that a particular query pair interacted 

with each other when at least one candidate pair had a score of “1.” This practical predicting process 

is shown in Figure 2, which provides an example using a query of the two protein sequences Q12834 

and Q13257 (UniProtKB). A BLASTP search was first used to find homologous proteins. We then 

combined the members within the two homologous lists Q1 and Q2 and calculated JE for each 

combination. After ranking these according to JE, we searched the HINTdb database for all of the 

homologous pairs, which yielded two pairs with a score of “+1” (Q24044 and Q9VRQ2; and Q9SZA4 

and Q9LU93). Therefore, we predicted that proteins Q12834 and Q13257 interact with each other. 

 

Figure 2 Flow chart of the method used to predict whether a query protein pair interact with each 

other (UniProtKB: Q12834 and Q13257). 

We also considered the impact of JE on the prediction results by using JE as a cut-off to select candidate 

pairs with a similarity that was less than the threshold. A JE threshold set (10−10, 10−30, 10−50, 10−70, 
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10−90, 10−110, 10−130, and 10−150) was built for setting the acceptance of the similarity for the candidate 

pairs. Since the E-value cut-off in BLASTP was set to 10−10, a JE value of 10−10 was equivalent to the 

case in which no threshold of E-value was applied, while 10−150 reflected the most stringent case. 

2.3 Machine-learning methods and feature extraction 

We used SVM and RF as the machine-learning algorithms. SVM shows good performance and 

generalization abilities for classification and regression analysis [23]. We adopted the RBF or 

Gaussian kernel as a kernel function. The RF algorithm employs a collection of decision trees to 

improve the stability and accuracy of classification. These algorithms require a fixed length of the 

feature vector for training and testing. We implemented six different feature extractions that 

succeeded in representing variable lengths of protein sequences: amino-acid composition (AAC) [42], 

dipeptide composition (DC) [42], tripeptide composition (TC) [43], pseudo-amino-acid composition 

(PseAAC) [44], MLD [27], and autocovariance (AC) [24]. The definitions of these features are 

described below. 

2.3.1 Amino-acid composition (AAC) 

AAC counts the frequency of each of the 20 amino acids based on the protein sequence. For a given 

protein sequence P, the feature vector Φ(P) can be calculated as: 

Φ(𝑃)=[ 𝑓(𝑥)𝑥∈{𝐴,𝑅,𝑁…𝑉}] 

where 

𝑓(𝑥)=
total number of amino acid 𝑥 in sequence

total number of amino acids in sequence
 

2.3.2 Dipeptide composition (DC) 

DC takes every two consecutive amino acids as a single unit and counts the frequency of all of the 

dipeptide patterns. It then represents a sequence with a fixed length vector of 400 (= 20 ³ 20). For a 

given protein sequence P, the feature vector Φ(P) is: 

Φ(𝑃)=[ 𝑓(𝑥)𝑥∈{𝐴𝐴,𝐴𝑅,…𝑉𝑁,…𝑉𝑉}] 

where 

𝑓(𝑥)=
total number of dipeptide 𝑥 in sequence 

total number of dipeptides in sequence 
 

2.3.3 Tripeptide composition (TC) 

In general, TC calculates the frequency of three consecutive amino acids and results in an 8,000 (= 

20 ³ 20 ³ 20)-dimensional vector. We reduced the dimensionality of this vector by classifying the 20 

amino acids into seven groups based on the dipoles and side-chain volumes (Table 1) [23]. Thus, the 

protein sequence P was transformed according to the names of the seven groups. TC counts the 

frequency of three consecutive groups and forms a 343 (= 7 ³ 7 ³ 7)-dimensional vector according 

to the following equation: 

Φ(𝑃)=[ 𝑓(𝑥)𝑥∈{111,112,…,776,777}] 
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where 

𝑓(𝑥)=
total number of tripeptide 𝑥 in sequence

total number of tripeptides in sequence
 

Table 1 The seven groups of amino acids based on their dipoles and side-chain volumes. 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

A, G, V I, L, F, P Y, M, T, S H, N, Q, W R, K D, E C 

2.3.4 Pseudo-amino-acid composition (PseAAC) 

PseAAC not only incorporates the amino-acid composition, but also considers the sequence order. 

The sequence order is represented by a series of sequence correlation factors, which are defined by a 

correlation function that includes hydrophobicity, hydrophilicity, and side-chain volume. The original 

values of these three physicochemical properties for each amino acid are listed in Supplementary 

Table S1. They were first normalized by: 

𝑁𝑅,𝑗=
𝑃𝑅,𝑗−𝑃𝑗

𝑆𝑗
 

where R relates to the 20 amino acids and j relates to the three properties mentioned above. Pj is the 

mean of the j-th property value across all 20 amino acids; Sj is the standard deviation of the j-th 

property value across all 20 amino acids; and NR,j is the normalized value of the j-th property for 

amino acid R. The correlation factors were then calculated according to the following equation:  

θ𝑙𝑎𝑔=
1

𝑛−𝑙𝑎𝑔
∑ ∑ (𝑁𝑋𝑖,𝑗−𝑁𝑋𝑖+𝑙𝑎𝑔,𝑗)

2

×
1

3

3

𝑗=1

𝑛−𝑙𝑎𝑔

𝑖=1

 

where lag is the interval between one residue and its vicinal residue, n is the sequence length of 

protein X, and Xi represents the amino acid at the i-th position of X. j relates to the three 

physicochemical properties. A given protein sequence is presented by a series of sequence correlation 

factors given below: 
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where fi is the normalized occurrence frequency of the 20 amino acids, θj is the correlation factor 

across distance j, λ controls the range of the sequence order considered, and w is the weight factor for 

the sequence order effect. Thus, a sequence can be represented by: 

Φ(𝑃)=[𝑥1,𝑥2,𝑥𝑢…,𝑥20+𝜆] 

We calculated PseAAC using the default parameters λ = 10 and w = 0.05, as proposed in [44]. 

2.3.5 Multiscale local descriptor (MLD) 

MLD is a proposed method for transforming the protein sequences into feature vectors by using a 

binary coding scheme. A protein sequence is transformed into groups based on the dipoles and side-

chain volumes. The entire sequence is then divided into multiple sequence segments of varying 

lengths to describe local regions. In MLD, the protein sequence is divided into four equal-length 

segments (S1, S2, S3, and S4), following which 16 different combinations are derived using a 4-bit 

binary coding scheme. For example, 1100 refers to the continuous region constructed by S1 and S2. 

In MLD, only nine continuous sub-sequences are considered: 0001, 0010, 0011, 0100, 0110, 0111, 

1000, 1100, and 1110. For each sub-sequence, the local descriptors Composition, Transition, and 

Distribution (CTD) [32] are calculated and concatenated. In CTD, the sequence is represented by 

seven groups of amino acids, which is the same as TC. Composition calculates the frequency of each 

group, Transition characterizes the frequency with which amino acids in one group are followed by 

amino acids in another group, and Distribution measures the location of the first, 25%, 50%, 75%, 

and 100% of the amino acids in the group. For example, the sub-sequence 

“AGCMTYCCACCCASYAGCCGYG” would be transformed into “1123332212221331122131” 

according to the amino-acid classification. The composition is 36.36% (= 8/22) for “1,” 36.36% (= 

8/22) for “2,” and 27.27% (= 6/22) for “3.” There are three types of transitions in this transformed 

sequence, giving a Transition of 28.57% (= 6/21) for “1” to “2” or “2” to “1”; 19% (= 4/21) for “1” 

to “3” or “3” to “1”; and 9.52% (= 2/21) for “2” to “3” or “3” to “2.” In terms of Distribution, eight 

residues are represented by “1,” the rankings of which at the first, 25%, 50%, 75%, and 100% of 

occurrences are 1st, 2nd (= 8 × 25%), 4th (= 8 × 50%), 6th (= 8 × 75%), and 8th (= 8 × 100%). The 

locations of “1” at the 1st, 2nd, 4th, 6th, and 8th positions in this sequence are 1, 2, 13, 17, and 22, 

respectively. Hence, the Distributions for “1” are 4.55% (= 1/22), 9.09% (= 2/22), 59.09% (= 13/22), 
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77.27% (= 17/22), and 100% (= 22/22). Similarly, the Distributions for “2” and “3” are 13.64%, 

31.82%, 45.45%, 54.55%, and 86.36%; and 18.18%, 18.18%, 27.27%, 63.64%, and 95.45%, 

respectively. For each continuous region, CTD generates a 63-dimensional vector: 7 for composition, 

21 (= 7 × [6/2]) for Transition, and 35 (= 7 × 5) for Distribution. Nine sub-sequences are then 

calculated and concatenated for a 567 (= 63 ³ 9)-dimensional feature vector. 

2.3.6 Autocovariance (AC) 

In AC, seven physicochemical properties of amino acids were selected to represent the sequence 

feature: hydrophobicity, hydrophilicity, amino-acid side-chain volume, polarity, polarizability, 

solvent-accessible surface area, and net charge index of the amino-acid side chains, respectively. The 

original values of these seven physicochemical properties for each amino acid are listed in 

Supplementary Table S2. They were first normalized to zero mean and unit standard deviation 

according to the following equation: 

𝑁𝑅,𝑗=
𝑃𝑅,𝑗−𝑃𝑗

𝑆𝑗
 

where R relates to the 20 amino acids and j relates to the seven physicochemical properties. Pj is the 

mean of the j-th property value across all 20 amino acids, Sj is the standard deviation of the j-th 

property value across all 20 amino acids, and NR,j represents the normalized value of the j-th property 

for amino acid R.  

AC uses the lag (i.e., the interval between one residue and its vicinal residue) to transform the variable 

length of protein sequences into a fixed length of the feature vector. For a given protein sequence, the 

AC feature is calculated by the following equation: 

𝐴𝐶𝑙𝑎𝑔,𝑗=
1

𝑛−𝑙𝑎𝑔
∑ (𝑁𝑋𝑖,𝑗−

1

𝑛
∑ 𝑁𝑋𝑖,𝑗

𝑛

𝑖=1

)×(𝑁𝑋(𝑖+𝑙𝑎𝑔),𝑗−
1

𝑛
∑ 𝑁𝑋𝑖,𝑗

𝑛

𝑖=1

)

𝑛−𝑙𝑎𝑔

𝑖=1

 

where lag represents the distance from its neighbor, j is the j-th property among the seven 

physicochemical properties, and Xi refers to the amino acid at position i of sequence X. Thus, the total 

length of AC is lag × 7 and is defined by: 

Φ(𝑃)=[𝐴𝐶1,𝑗,𝐴𝐶2,𝑗,…,𝐴𝐶30,𝑗],𝑗∈{1,2,…,7} 

In this study, lag was set to 30, which is the optimal value reported by Guo [24]. 

2.3.7 Representing proteins 

All of the above feature extraction methods were used to represent an individual protein sequence, 

separately. Because our goal was to predict whether pairs of proteins interact, a protein pair was 

represented by concatenating the feature vectors of two sequences in the protein pair. Two popular 

machine-learning techniques, SVM and RF, were then applied to build classifiers separately. 

2.4 Optimization of parameters 

Optimization of the training model is a common step in machine learning, for which grid search is 
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often the method of choice. Grid search simply involves conducting exhaustive searching over a 

manually specified subset of candidate parameters. This search is usually carried out using the cross-

validation method. The optimal parameters were then selected for the training model based on the 

performance of all of the parameters employed in the grid search. In this study, grid search was 

implemented in both SVM and RF to search for the best parameters. In general, an SVM classifier 

with RBF kernel has at least two parameters that need to be tuned for good performance: the cost 

parameter, which determines the misclassification penalty; and the gamma parameter, which is used 

in the RBF kernel function. The values of 1, 10, 100, and 1,000 were used for the cost parameter, 

while 0.0001, 0.001, 0.01, and 0.1 were used for the gamma parameter in the grid search. Regarding 

RF, two parameters are tuned: the ensemble size and the maximum number of features in each 

decision tree. The values of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 were used for the ensemble 

size, and the values of 5, 10, 15, 20, 25, and 30 were used for the maximum number of features to 

search for the best parameter. Two parameters, the maximum number of features and the number of 

trees, were optimized by grid search through fivefold cross-validation. The jackknife test was also 

used for comparison of the homology-based method and the machine-learning method. 

2.5 Evaluation 

The performance of each classifier was measured using the 5-fold cross validation. Several 

measurements are used to evaluate classifiers and they are sensitivity, specificity, accuracy, the 

Matthew’s correlation coefficient (MCC), and area under the receiver operating characteristic curve 

(AUC). In the following equations, TP, FN, TN, FP refer to the numbers of true positives, false 

negatives, false negatives and false positives respectively. 

Sensitivity is the percentage of correctly predicted interacting protein pairs and given by: 

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

Specificity is the percentage of correctly predicted non-interacting protein pairs using the following 

equation: 

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Accuracy is the percentage of correctly identified interacting and non-interacting pairs and given by: 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

MCC is a balanced measurement used to assess the effectiveness of the performance. Its definition is 

given by: 

MCC=
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑃+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
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AUC is a measurement independent of the threshold of the decision value based on Receiver 

Operating Characteristic (ROC) curve. ROC represents the relationship between sensitivity (true 

positive rate) and 1-specificity (false positive rate). ROC curves help to identify the potential tradeoff 

between correct predictions and incorrect ones. It can also be summarized as a single value by taking 

the area under the curve (AUC). In this study, MCC was used in machine learning method for 

selecting optimal parameters. 

3. RESULTS AND DISCUSSION 

3.1 Performance of the homology-based method 

The performance of the homology-based method using different JE thresholds is shown in Table 2. 

Several measurements are used to evaluate classifiers, including sensitivity, specificity, accuracy, and 

the Matthew’s correlation coefficient (MCC) described in section 2.5. In the case of JE = 10−10, the 

sensitivity was 74.06%, the specificity was 71.63%, the accuracy was 72.84%, and MCC was 45.70%. 

As the JE threshold became more stringent, the overall performance deteriorated, with the exception 

of specificity. For instance, the most rigorous case of JE = 10−150 had the highest specificity (95.42%), 

but the lowest values for all other measurements (sensitivity, 27.92%; accuracy, 61.67%; and MCC, 

31.64%). Therefore, on the basis of the accuracy and MCC, a threshold of JE = 10−10 was considered 

optimal for the homology-based method. 

Table 2 Performance of the homology-based method using different joint sequence similarity (JE) 

thresholds. MCC, Matthew’s correlation coefficient 

JE threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC (%) 

10−10 74.06 71.63 72.84 45.70 

10−30 70.18 74.86 72.52 45.09 

10−50 65.63 78.22 71.92 44.21 

10−70 61.10 81.17 71.14 43.15 

10−90 56.68 84.09 70.39 42.40 

10−110 45.15 89.96 67.55 39.28 

10−130 35.60 93.74 64.67 36.07 

10−150 27.92 95.42 61.67 31.64 

3.2 Protein families 

A protein family represents a group of proteins that typically have similar structures, functions, and 

sequence similarity; this information may provide some vital clues in PPI prediction. The Pfam 30.0 

[45] database provides an extensive collection of 16,306 protein families and the interactions between 

protein families based on a 3D structure analysis [46]. A search against the Pfam 30.0 database (E-

value cut-off = 10−8) allowed us to list the top 10 most frequent Pfam families occurring in 2,864 true 

positive pairs (Table 3). 
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Table 3 Top 10 most frequent Pfam families in true positive pairs. The relative frequency was 

calculated as the proportion of occurrences of each family relative to the total number of families. 

No. Pfam identifier Family name Frequency (%) 

1 PF00400 WD40 5.7 

2 PF00069 Pkinase 2.3 

3 PF00076 RRM_1 1.5 

4 PF00028 Cadherin 1.2 

5 PF05001 AMP-binding 1.3 

6 PF00681 Plectin 0.9 

7 PF00008 EGF 0.8 

8 PF00017 SH2 0.7 

9 PF00240 Ubiquitin 0.7 

10 PF00630 Filamin 0.7 

Most of these families were reasonably common, being close to or above a rate of 1%, and were 

functionally related to the interactions that were also reported previously [11]. For example, members 

of the WD40 protein family are functionally related in terms of transduction, transcription, and cell 

cycle control. WD40 motifs act as a site for PPIs and WD40 proteins contribute to the assembly of 

protein complexes or act as mediators of transient interplay among other proteins. Another family 

that frequently occurred among the true positives was the Pkinase (protein kinase) family, the proteins 

in which are evolutionarily conserved to mediate protein phosphorylation, which plays a key role in 

cellular processes such as division, proliferation, and differentiation. Phosphorylation usually results 

in a functional change in the target protein by altering enzyme activity, cellular location, or the 

association with other proteins, and the catalytic subunits of protein kinases are highly conserved. 

Other protein families that frequently occurred among the true positives, such as RRM_1 (RNA 

recognition motif), Cadherin, and AMP-binding, are also related to the act of protein binding. 

3.3 Performance of the machine-learning methods 

We used the machine-learning methods SVM and RF, in which we implemented fivefold cross-

validation and a grid search to choose the optimal parameters based on AUC. All of the measurement 

scores were calculated as the mean of five subsets through the fivefold cross-validation. The 

performance of SVM for each feature is shown in Table 4. DC outperformed all other features in 

terms of accuracy (87.32%), MCC (74.64%), and AUC (94.78%), while AC showed the lowest AUC 

score (92.09%). All features had accuracies >80% and AUC scores >90%. The ROC curves for each 

of these features are shown in Figure 3, with DC showing the best AUC score. 

 

 

http://www.rjlbpcs.com/


  Yifan Tang, et al  RJLBPCS  2017     www.rjlbpcs.com     Life Science Informatics Publications 

© 2017 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2017 Sept- Oct RJLBPCS 3(3) Page No.14 

 

Table 4 Performance of support vector machine (SVM) for each protein feature. MCC, Matthew’s 

correlation coefficient; AUC, area under the receiver operating characteristic curve; AAC, amino-

acid composition; DC, dipeptide composition; TC, tripeptide composition; MLD, multiscale local 

descriptor; PseAAC, pseudo-amino-acid composition; AC, autocovariance 

Feature Sensitivity (%) Specificity (%) Accuracy (%) MCC (%) AUC (%) 

AAC 86.35 ± 1.81 84.77 ± 1.90 85.56 ± 1.04 71.13 ± 2.07 93.23 ± 1.03 

DC 86.60 ± 2.10 88.03 ± 1.74 87.32 ± 1.63 74.64 ± 3.26 94.78 ± 1.11 

TC 85.85 ± 2.96 87.69 ± 1.54 86.77 ± 1.70 73.57 ± 3.39 93.92 ± 1.35 

MLD 84.74 ± 2.14 86.58 ± 3.44 85.66 ± 2.21 71.35 ± 4.46 94.05 ± 1.36 

PseAAC 75.33 ± 3.52 91.13 ± 1.96 83.23 ± 1.51 67.32 ± 2.77 93.44 ± 1.12 

AC 87.02 ± 1.45 82.99 ± 4.40 85.00 ± 2.49 70.07 ± 4.89 92.09 ± 0.93 

 

Figure 3 The mean receiver operating characteristic (ROC) curve under fivefold cross-validation 

with SVM. AAC, amino-acid composition; DC, dipeptide composition; TC, tripeptide composition; 

MLD, multiscale local descriptor; PseAAC, pseudo-amino-acid composition; AC, auto covariance. 

For RF, PseAAC outperformed all other features in terms of accuracy (86.75%), MCC (73.53%), and 

AUC (95.16%), whereas AC showed the lowest AUC score (94.19%; Table 5). All accuracy scores 

were in the range of 85%–86% and all AUC scores were in the range of 94%–95%. Only slight 
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differences were observed among the ROC curves of the six features (Figure 4). 

Table 5 Performance of RF for each protein feature. Other legends are the same as those in Table 4. 

Feature Sensitivity (%) Specificity (%) Accuracy (%) MCC (%) AUC (%) 

AAC 85.10 ± 1.15 88.26 ± 1.99 86.68 ± 1.14 73.41 ± 2.30 95.14 ± 0.74 

DC 84.22 ± 1.63 87.36 ± 2.39 85.79 ± 0.71 71.63 ± 1.46 94.66 ± 1.00 

TC 85.31 ± 3.30 86.92 ± 1.82 86.11 ± 2.02 72.25 ± 4.02 94.61 ± 1.16 

MLD 85.93 ± 2.14 86.86 ± 1.87 86.40 ± 1.40 72.81 ± 2.79 94.72 ± 1.08 

PseAAC 85.52 ± 1.97 87.98 ± 2.79 86.75 ± 1.08 73.53 ± 2.19 95.16 ± 0.70 

AC 83.71 ± 1.18 87.51 ± 1.86 85.61 ± 0.62 71.28 ± 1.30 94.19 ± 0.96 

 

 

Figure 4 The mean receiver operating characteristic (ROC) curve under fivefold cross-validation 

with RF. Other legends are the same as those in Figure 3. 

3.4 Protein features 

Among the six protein features examined, DC and PseAAC showed the highest AUC scores with 

SVM and RF, respectively, while AC had the lowest AUC scores for both methods. All features except 

AC incorporated the frequency of amino-acid pattern (single AA or consecutive AAs), indicating that 

this plays a major role in the classification of PPIs. PseAAC not only includes AAC, but also 

considers the physicochemical properties of the proteins. PseAAC outperformed AAC in terms of 
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AUC by 0.21% and 0.02% in SVM and RF, respectively, demonstrating the effectiveness of 

combining these features. Data on the basic amino acid composition (AAC) are often useful for 

characterizing a dataset. In total, 3,380 and 2,553 protein sequences occurred in the positive and 

negative datasets, respectively. To investigate the difference between these, we excluded the 466 

sequences that were common to both datasets. A comparison of the frequency of the 20 amino acids 

showed only a slight difference between the positive and negative datasets (Figure 5), indicating that 

the use of AAC alone may not be the best approach for representing the features of the dataset. 

 

 

Figure 5 Relative frequencies of the 20 amino acids in the positive and negative datasets. 

DC provided the best predictions in the SVM approach because it takes two consecutive amino acids 

into account and so can extract more patterns from the protein sequences. We listed the top 20 most 

different occurrences in frequency according to DC (Figure 6), which contributed to its good 

performance. By contrast, PseAAC outperformed all other features for RF because it incorporated 

both frequency and sequence order information. These sequence order factors use the properties of 

hydrophobicity, hydrophilicity, and side-chain volume, all of which are related to the physical 

interactions. 
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Figure 6 Top 20 most different frequencies of two consecutive amino acids in dipeptide composition. 

3.5 Comparison of the homology-based method and the machine-learning methods 

One classifier was selected to represent each of the machine-learning methods (DC for SVM and 

PseAAC for RF) and these were compared directly. PseAAC with RF outperformed DC with SVM 

in terms of AUC by 0.38%, but had 0.57% lower accuracy. Therefore, since a high accuracy score 

will provide more instances for comparison with the homology-based method, DC with SVM was 

selected as the representative classifier for the machine-learning methods, for which the jackknife test 

was conducted to predict the likelihood of interaction of each pair in turn.The comparison of the two 

methods is shown in Table 6. DC with SVM outperformed the homology-based method (JE = 10−10) 

in terms of sensitivity (+13.39%), specificity (+16.91%), accuracy (+15.16%), and MCC (+30.31%). 

Table 6 Performance of the machine-learning and homology-based methods. 

Method Sensitivity (%) Specificity (%) Accuracy (%)  MCC (%) 

DC with SVM 87.45 88.54 88.00 76.01 

Homology-based 74.06 71.63 72.84 45.70 

In addition, the two methods were assessed by comparing the number of TP and TN pairs. More than 

65.1% of the 7,734 pairs (3,867 positive pairs plus 3,867 negative pairs) were predicted correctly 

using both the homology-based method and the SVM model (Figure 7). However, nearly 23.5% of 

the 3,867 positive pairs and 22.2% of the 3,867 negative pairs were beyond the ability of the 

homology-based method, but were predicted well using SVM. By contrast, 10.2% of the 3,867 

positive pairs and 5.3% of the 3,867 negative pairs failed to be identified in SVM, but were 

successfully predicted using the homology-based method. 
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Figure 7 Comparison of the machine-learning and homology-based methods. 

 

The homology-based method depends on the local sequence alignment, meaning that the measure of 

homology, acceptance of the E-value, or pairwise similarity had a large impact on the prediction 

results in our experiments, with an inability to predict interacting pairs without homologs correctly. 

However, these pairs could be identified using SVM. Regarding DC with SVM, several vectors were 

selected as support vectors to determine the hyperplane of classification in the collected dataset. 

However, those vectors that are in close proximity to the hyperplane may be misclassified. Therefore, 

it is expected that an approach integrating these two methods would improve the performance for 

predicting PPIs. Sequences that are annotated as belonging to the same family typically contain 

conserved regions and are functionally related. Across the entire dataset, 40 protein families were 

selected according to the ranking order, with the number of occurrences ranging from 1,466 to 59. 

Table 7 illustrates the accuracy for each protein family using each of the two methods. This shows, 

for instance, that the accuracy of the protein pairs containing PF00168 (No. 23; C2) was 83.5% in the 

SVM model but 43.8% in the homology-based model. This family is a C2 domain involved in 

targeting proteins to cell membranes. It shows wide range of lipid selectivity for the major 

components of cell membranes, while protein pairs containing PF00134 (No. 40; Cyclin_N) achieved 

accuracy of 89.2% in the homology-based method and 85.7% in the SVM model. These different 

results could be used to select the optimal method for obtaining the best result. It is expected that the 

consideration of multiple domain effects may provide a more precise result in specific cases and will 

contribute to the further study of PPI prediction. 
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Table 7 Performance of SVM and homology-based methods for each protein family 

No.  Protein 

family 

Average 

length of 

the domain 

Average 

identity of full 

alignment (%) 

Average 

coverage of the 

sequence by the 

domain (%) 

No. of 

occurrences 

Accuracy 

with 

homology 

(%) 

Accuracy 

with 

SVM (%) 

1 PF00240 70.30 37 % 25.31  1466 65.8 98.9 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

PF00069 

PF00400 

PF07714 

PF00018 

PF00017 

PF07654 

PF00227 

PF00076 

PF00271 

PF00071 

PF01248 

PF00104 

PF00105 

PF00170 

PF00010 

PF00179 

PF00439 

PF12796 

PF07686 

PF00096 

PF13912 

PF00168 

PF00467 

PF00569 

PF10584 

PF00270 

PF01423 

PF00169 

PF00249 

PF00888 

PF13920 

PF00531 

PF00046 

PF13181 

PF00397 

PF00628 

PF00782 

PF01479 

PF00134 

238.10 

39.40 

230.00 

47.20 

77.60 

82.10 

172.20 

67.40 

116.90 

152.20 

92.10 

179.20 

67.20 

61.00 

53.90 

132.60 

83.90 

87.80 

103.10 

23.20 

26.00 

105.90 

34.00 

44.40 

22.90 

169.90 

69.40 

104.40 

47.50 

460.40 

48.80 

81.70 

56.00 

32.30 

29.90 

50.00 

123.80 

46.80 

124.00 

21  

25  

24  

29 

28 

24 

21 

22 

20 

29 

23 

19 

46 

28 

29 

27 

26 

23 

17 

40 

34 

18 

31 

30 

62 

22 

25 

17 

26 

22 

30 

20 

32 

19 

36 

29 

20 

26 

19 

38.74  

19.92  

35.37  

7.11 

14.81 

33.37 

72.55 

22.89 

13.28 

59.73 

48.69 

38.75 

14.63 

16.59 

13.98 

45.04 

10.61 

30.24 

36.94 

20.25 

7.24 

20.29 

17.01 

4.59 

8.51 

22.25 

50.36 

13.31 

13.98 

65.28 

9.09 

9.09 

14.83 

6.93 

6.04 

5.85 

29.62 

17.51 

30.75 

363 

304 

204 

179 

173 

172 

130 

129 

122 

112 

103 

102 

98 

96 

95 

94 

94 

87 

79 

75 

75 

73 

71 

66 

65 

64 

63 

63 

63 

62 

62 

62 

60 

60 

59 

59 

58 

57 

56 

73.5 

68.4 

68.1 

70.9 

77.4 

89.5 

47.6 

62.0 

72.1 

45.5 

94.1 

68.6 

69.3 

79.1 

85.2 

89.3 

74.4 

66.6 

92.4 

57.3 

57.3 

43.8 

70.4 

75.7 

24.6 

64.0 

55.5 

73.0 

71.4 

93.5 

80.6 

70.9 

41.6 

71.6 

83.0 

71.1 

77.5 

63.1 

89.2 

82.0 

88.1 

78.4 

86.5 

85.5 

97.0 

87.6 

89.9 

92.6 

78.5 

98.0 

79.4 

79.5 

90.6 

84.2 

87.2 

77.6 

80.4 

91.1 

90.6 

90.6 

83.5 

100.0 

74.2 

92.3 

93.7 

79.3 

77.7 

79.3 

93.5 

85.4 

79.0 

85.0 

93.3 

89.8 

89.8 

96.5 

100.0 

85.7 

In this study, we demonstrated that an appropriate protein feature combined with the learning 

algorithm is useful for classifying protein pairs into those that do and do not interact with each other. 

We also found that 10.2% (394) of interacting pairs and 5.3% (204) of non-interacting pairs failed to 

be identified by the SVM model, but were successfully predicted using the homology-based method. 
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This suggests that integrating these two methods may enhance the performance in further study. 

Finally, across the entire dataset, we listed the top 40 protein families that frequently appeared by 

searching Pfam database. We showed the accuracy of the predictions of interaction for each of these 

families using each of the two methods. The difference in performance among these families may 

provide a way of predicting when given a protein pair belongs to a particular protein family. 

4. CONCLUSION 

In this study, we demonstrated that an appropriate protein feature combined with the learning 

algorithm is useful for classifying positive and negative protein pairs. We also found that 10.2% (394) 

of positive pairs and 5.3% (204) of negative pairs failed to be identified by the SVM model, but were 

successfully predicted using the homology-based method. This suggests that integrating these two 

methods may enhance the performance in further study. Finally, across the entire dataset, we listed 

the top 40 protein families with the most occurrences by the searching Pfam database. We showed 

the accuracy of the predictions of interaction for each of these families using each of the two methods. 

The difference in performance among these families may provide a way of predicting when given a 

protein pair belongs to a particular protein family. 
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SUPPLEMENTARY FILES 

Table S1 The original values of the three physicochemical properties for each amino acid. H1: 

hydrophobicity; H2: hydrophilicity; M: the mass of side chain. 

 

AA H1 H2 M 

A 0.62 -0.5 15.0 

R -2.53 3.0 101.0 

N -0.78 0.2 58.0 

D -0.90 3.0 59.0 

C 0.29 -1.0 47.0 

Q -0.85 0.2 72.0 

E -0.74 3.0 73.0 

G 0.48 0.0 1.0 

H -0.40 -0.5 82.0 

I 1.38 -1.8 57.0 

L 1.06 -1.8 57.0 

K -1.50 3.0 73.0 

M 0.64 -1.3 75.0 

F 1.19 -2.5 91.0 

P 0.12 0.0 42.0 

S -0.18 0.3 31.0 

T -0.05 -0.4 45.0 

W 0.81 -3.4 130.0 

Y 0.26 -2.3 107.0 

V 1.08 -1.5 43.0 
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Table S2 The original values of the seven physicochemical properties for each amino acid. H1: 

hydrophobicity; H2: hydrophilicity; V: volume of side chains; P1: polarity; P2: polarizability; SASA: 

solvent accessible surface area; NCI: net charge index of side chains. 

 

AA H1 H2 V P1 P2 SASA NCI 

A 0.62 -0.5 27.5 8.1 0.046 1.181 0.007187 

R -2.53 3.0 105 10.5 0.291 2.56 0.043587 

N -0.78 0.2 58.7 11.6 0.134 1.655 0.005392 

D -0.90 3.0 40 13 0.105 1.587 -0.02382 

C 0.29 -1.0 44.6 5.5 0.128 1.461 -0.03661 

Q -0.85 0.2 80.7 10.5 0.18 1.932 0.049211 

E -0.74 3.0 62 12.3 0.151 1.862 0.006802 

G 0.48 0.0 0 9.0 0.0 0.881 0.179052 

H -0.40 -0.5 79 10.4 0.23 2.025 -0.01069 

I 1.38 -1.8 93.5 5.2 0.186 1.81 0.021631 

L 1.06 -1.8 93.5 4.9 0.186 1.931 0.051672 

K -1.50 3.0 100 11.3 0.219 2.258 0.017708 

M 0.64 -1.3 94.1 5.7 0.221 2.034 0.002683 

F 1.19 -2.5 115.5 5.2 0.29 2.228 0.037552 

P 0.12 0.0 41.9 8.0 0.131 1.468 0.239531 

S -0.18 0.3 29.3 9.2 0.062 1.298 0.004627 

T -0.05 -0.4 51.3 8.6 0.108 1.525 0.003352 

W 0.81 -3.4 145.5 5.4 0.409 2.663 0.037977 

Y 0.26 -2.3 117.3 6.2 0.298 2.368 0.023599 

V 1.08 -1.5 71.5 5.9 0.14 1.645 0.057004 
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