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ABSTRACT: MicroRNAs (miRNAs) are small non-coding RNA molecules that serve as master 

regulators of cellular functions. In plants, miRNA target recognition requires extensive sequence 

complementarities, while in animals it requires sequence complementarities at the 5’ end of the 

miRNAs. Many computational methods have been used for finding miRNA target interactions, but 

precise miRNA target gene identification is a challenging task. In this study, we employed structural 

properties for training a support vector machine (SVM) classifier, which was used for filtering the 

miRNAs targets. We achieved a sensitivity of 83.62%, a specificity of 87.92 % and an accuracy of 

85.86%. This method identified new BK polyomavirus miRNA on the human gene as an efficient and 

accurate identification of potential miRNA targets. 
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1.INTRODUCTION 

MicroRNAs (miRNAs) are small non-coding (20-24 nucleotide long) [31] RNA molecules that serve 

as post-transcriptional regulators of plant and animal gene expression. miRNA target recognition in 

plants requires extensive sequence complementarities whereas, in animals, miRNAs show partial 

complementarities to their targets for recognition [1], [4]. miRNAs are involved in the regulation of 

an array of gene expressions such as embryonic development, cellular functions and biological 

expressions [2], [3]. Target recognition occurs via ~7nt consecutive Watson-Crick base pairs on CDS 

[37] and the 3’ Untranslated Regions (UTRs) [32] of mRNAs. The miRNA-target paired ~7nt bases 

at the 5’ ends of miRNAs, is called the seed region, important for target recognition [5], [6], [8], [9], 
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[10]. Recent work in the identification of miRNA targets has been done with the help of 

bioinformatics and molecular techniques. Identification of potential miRNA target genes is a great 

challenging task and can be predicted using bioinformatics approaches and Machine Learning 

techniques [3], [7], [10], [11], [12], [13], [14]. Several computational methods already predict miRNA 

targets, but the complexity of miRNA targeting deprives the standardization of specific thumb rules, 

aggravating the problem of false positive results. Many authors support the use of Machine Learning 

methods for improving target prediction by training with biologically relevant data [11], [12], [13], 

[14], [15], [16]. The publicly available miRNA-target databases - miRecords, Tarbase and mirtarbase 

contain experimentally validated miRNA-target interactions [24], [25], [26]. Information from such 

databases can help to train Support Vector Machines (SVM) and predict miRNA targets, based on 

experimentally validated miRNA-targets [11], [12], [13], [14], [15], [16]. Experimental identification 

of miRNA targets is a time-consuming and labor-intensive process, making the development of 

computational approaches for predicting potential miRNA-targets, a necessary one. Computational 

methods have been developed and widely used in miRNA target prediction such as HomoTarget, 

miTarget, MiRTif, MTar, TargetMiner, MultiMiTar, miRanda, TargetScan and RNAhybrid, where the 

predictions are performed considering miRNA-target sequence complementarities and 

thermodynamics parameters [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. Several 

experimental studies support that the first 2-7 nucleotides at the 5’ end of the miRNA are particularly 

important for target recognition [5], [6], [8], [9], [10], [19], [20]. The miRNA-target interaction occurs 

via near-perfect complementarities of base-pairing in the seed region of the miRNA-target. 

In this study, we employed a dynamic programming algorithm for searching the miRNA-target 

duplexes, which were subsequently classified as true or false targets using Support Vector Machines. 

In the machine learning approach using SVM, experimentally validated miRNA-target interactions 

were used for training the SVM model [22], [23], [33], [34]. The miRTarBase (2016,) database 

provides information on 366,181 experimentally validated miRNA-target interactions. This database 

contains pre-classified Functional MTIs (Functional miRNA-target interactions) and NON-

Functional MTIs (NON-Functional miRNA-target interactions) [26]. Our method detects functional 

miRNA target sites in the CDS genome sequence based on the Smith-Waterman dynamic 

programming algorithm and subsequent post processing filtering of the predicted targets using 

support vector machine (SVMlight) [33]. The SVM classifier was previously trained with the 

experimentally validated miRNA-target interactions found in miRTarBase. For model training, each 

experimentally validated miRNA-mRNA target interaction from miRTarBase was mapped onto a 

Support Vector Machine (SVM) model, and the trained model was used to classify the predicted 

targets. Support Vector Machines (SVMs) were first introduced by Vapnik and co-workers [34]. The 

trained model was used to classify unlabeled inputs into two classes: positive target and negative 

target. Our model achieved a sensitivity of 83.62, specificity 87.92, and an accuracy of 85.86.  
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2. MATERIALS AND METHODS 

Dataset 

Experimentally verified miRNA-mRNA target datasets were retrieved from the miRTarBase. 464 

Positive datasets (Functional miRNA-target interactions, MTIs) carrying strong evidence of 

interaction using reporter assay and Western blots, while the 505 NON-Functional miRNA-target 

interactions (NON-MTIs) were considered as the negative dataset. miRNA-target hybrid duplexes of 

Homo sapiens, Mus musculus, Rattus norvegicus, Danio rerio, and Caenorhabditis elegans, were 

retrieved and duplicate entries removed [26], [27], [28].  

Motif search for miRNA target sites recognition 

At first, the miRNA sequence stretches between positions 2-7nt at the 5’ end of the miRNAs were 

converted to their complementary sequences. For motif recognition (7mer) [5], [6], [7], [8], [9], [10], 

(Supplementary 1) complementary RNA sequences were searched against target sites in the mRNA 

sequences retrieved from the NCBI FTP human genome database. Once the motif position was 

determined, the entire sequences of the miRNAs were aligned against the target mRNA sequences 

using the Smith-Waterman dynamic programming algorithm [22], [23]. 

Dynamic Programming Algorithm scoring for local alignment 

The dynamic programming alignment scoring was based on sequence complementarities and not on 

sequence identities. Wobble base pairs were also taken into consideration. Sequence alignment scores 

were assigned as: Watson Crick base pair( A:U =5, G:C=5 ), mismatch=  (A:A=-3, G:G=-3, C:C=-

3, U:U=-3, A:G=-3, U:C=-3, A:C=-3), gap-opening=-8 (A- ,U- ,G- ,C-) gap-extension=-2  and 

wobble pair G:U =2 (19). 

Feature selection 

The 464 experimentally verified positive (MITs) and 505 negatives (NON-MITs) miRNA-target 

hybrids were analyzed by Fisher score and the most significant 71 SVM features were determined. 

Identification of SVM features was based on Position specific structural feature, entire structural 

feature and consecutive Watson-Crick base pairing patterns [12], [13], [15]. 

Position specific structural feature 

1st type: In the position specific scoring scheme, we focused on 14 type of base pairings in a miRNA-

target duplex: Watson-Crick base pair (A: U, G: C), wobble base pair (G: U), gap (A-, U-, G-, C-) 

and mismatch (AA, UU, GG, CC, AG, CU, AC). For each miRNA-target interaction, we calculated 

the F-score from the Position Specific Scoring Scheme (p1.p2p3…..p22) and selected the 39 most 

important features out of 308 SVM features (Table 1 and Supplementary 3). 
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 Table 1 

Position 

Specific 

Selected Features Total 

Features 

Selected 

Features 

1 AU, GC, GU, UU, CU, U-, G-, C-, A-. 14 9 

2 AU, GC, GU, UU, AG, U-. 14 6 

3 GC, GU, UU, GG, AC, CU. 14 6 

4 GC, GU, CC, AG, AC, CU. 14 6 

5 AU, GU, AA, AG, AC. 14 5 

6 AU, GU. 14 2 

7 GU, UU. 14 2 

8 GU, 14 1 

10 U- 14 1 

15 GC. 14 1 

 (14 Types of Base Pairing) x (22 Positions)= Total 

Features 

308 39 

 [Table 1: Base Pairing types = (AU, GC, GU, AA, UU, GG, CC, AG, CU, AC, A-, U-, G, C-).] 

2nd type: 3 types of pairing were defined in a miRNA-target duplex: Watson-crick base pair (WC = 

AU, GC), the gap (A-, U-, G-, C-) and mismatch (M = AA, UU, GG, CC, AG, CU, AC). For each 

miRNA-target interaction, we determined the F-score from the computed Position Specific Scoring 

Scheme (p1.p2p3…..p22) and selected the 16 most important features out of the 66 SVM features 

(Table 2 and Supplementary 4). 

Table 2 

Position 

Specific 

Selected Features Total 

Features 

Selected 

Features 

1 WC, M, Gap 3 3 

2 WC, M. 3 2 

3 WC, M 3 2 

4 WC, M, 3 2 

5 WC, M, 3 2 

6 WC, M, 3 2 

7 M, 3 2 

8 Gap 3 1 

 (3 Type of Base Pairing) x (22 Position)= Total Features 66 16 

[Table 2: WC= (AU,GC); Mismatch=M (AA,UU,GG,CC,AG,CU,AC), Gap=(A-,U-,G-,C-).] 
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Entire structural 14 base pairing 

In the 1st type structure based feature selection, we defined 14 types of base pairing in a duplex: 

Watson-Crick base pair (A: U, G: C), wobble base pair (G: U), gaps (A-, U-, G-, C-) and mismatches 

(AA, UU, GG, CC, AG, CU, AC). For each miRNA: target interaction, we computed the entire length 

of miRNA duplex target F-score and found the 4 most important features of the 14  SVM features 

(Table 3,Supplementary 5). 

Table 3 

Entire 

length 
Selected Features 

Total 

Features 

Selected 

Features 

1-22 AU, UU, GG, GU 14 4 

 
(14 base pairing type) x (1-22 total Alignment)= Total 

Features 
14 4 

[Table 3: Base Pairing type= (AU, GC, GU, AA, UU, GG, CC, AG, CU, AC, A-, U-, G, C-).] 

In the 2nd type, we defined 3 types of pairing in a duplex: Watson-Crick base (WC: AU, GC), gaps 

(A-, U-, G-, C-) and mismatches (AA, UU, GG, CC, AG, CU, AC). For each miRNA: target 

interaction, we computed the F-score from the entire length of the miRNA-target duplex and 

identified the 1 most significant feature out of 3 SVM features (Table 4, Supplementary 6). 

Table 4 

Entire 

length 

Selected Features Total 

Features 

Selected 

Features 

1-22 WC. 3 1 

 (3 base pairing type) x (1-22 total Alignment)= Total 

Features 

3 1 

[Table 4: WC= (AU,GC), Mismatch=M (AA,UU,GG,CC,AG,CU,AC) and Gap=(A-,U-,G-,C-).] 

Consecutive Watson-Crick base pairing patterns 

We employed a novel approach for finding SVM features, in which we identified (6, 7 or 8) 

consecutive Watson-Crick base pairing pattern in the seed region and  4, 5, 6, 7, 8 consecutive 

Watson-Crick base pairing patterns in the non-seed region, and selected the 11 most important SVM 

features (Table 5, Figure 1 and supplementary-2). 
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Table 5 

Number of consecutive 

Watson-Crick base 

pairs 

(the number of base 

pairs indicated by | 

vertical bars) 

F scores (F) 

Seed region(Positions 0-8) 
Non-Seed region 

(Positions 8-22) 

4 (||||) None found F= 0.0946 

5 (|||||) None found F= 0.1110 

6 (||||||) 
F= 0.3372 

(position 1-6) 

F= 0.5637 

(position 2 -7) 

F= 0.4887 

(position 3-8) 
F= 0.1060 

7 (|||||||) F= 0.3455 (position 1-7) F= 0.5452 (position 2-8) F= 0.1076 

8 (||||||||) F= 0.3009 (position 1-8) F= 0.1157 

[Table 5: WC= (AU,GC), Mismatch=M (AA,UU,GG,CC,AG,CU,AC) and Gap=(A-,U-,G-,C-).] 

SVM models training 

For the proper training of SVM models, selection of several hyper-parameters is an essential 

prerequisite; their values determine the function of SVM model and it has a significant impact on the 

performance of the trained SVM model classifiers. In this work, the optimal threshold value selected 

based on 10-fold cross-validation on the entire dataset. The widely used radial basis function (RBF) 

kernel was chosen for the training of the model [12], [13], [15]. 

Pseudo-code of our algorithm 

Our algorithm 

Motif search 6-8 seed (miRNA sequence, mRNA sequence); 

{ 

Alignments= Dynamic Programming local alignment (miRNA, mRNA); 

svm data =(ExtractFeatures); 

Inputs=svm Classifier (svm data); 

Outputs=SVM_clasiffy(inputs); 

Return outputs; 

} 

3.RESULT AND DISCUSSION 

The performance of the final SVM classification is measured by the quantity of true positives (TP), 

true negatives (TN), false positives (FP), false negatives (FN), sensitivity (SE), specificity (SP) and 

overall accuracy (Q) [13],[15],[16]. Using currently known experimentally verified miRNA-mRNA 

target duplexes, 464 Positive datasets (Functional miRNA-target interactions, MTIs) and 505 NON-
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Functional miRNA-target interactions (NON-MTIs), the SVM classifier was tested. 

Overall prediction accuracy 

The sensitivity, specificity, overall accuracy and AUC (area under the curve) of the 10-fold cross-

validation are 83.62%, 87.92%, 85.86% and 91.69% respectively (Figure 1). The prediction methods 

usually produce hundreds of targets for a given miRNA, meaning a large number of them could be 

false positives. Using the known miRNA-target interaction pairs, our trained SVM classifier 

successfully predicted most of the false positives: 444 were correctly predicted out of 505 from 

negative samples (NON-MTIs) with known false positive interactions. Of the 464 positive samples 

with known experimental evidence, our model could predict 388 correctly. 

TP=388, FP =76, TN=444, FN=61, Sensitivity = (83.62), Specificity = (87.92), Accuracy = (85.86) 

AUC=0.9169. 

Sensitivity (SE) =TP/TP+FN. 

Specificity (SP) =TN/TN+FP. 

Accuracy (Q) =TP+TN/TP+TN+FP+FN. 

   

Figure 1: The ROC curve denotes the performance of TARFi and with other the tools; TARFi (Green 

line), MiRTif (Red line) and TargetMiner (Blue line). The Y-axis represents the true positive rate 

(sensitivity) and X-axis shows the false positive rate (1—specificity), (ROC)is created by R 

Programming ’ROCR’ package. 

Figure 1 shows the plot of the true positive rate versus the false positive rate on the completely 

independent test data set. The TargetMiner independent test data set was retrieved from TargetMiner 

reference miRNA::mRNA duplexes and MiRTif independent test data set was retrieved from MiRTif 

(supplementary data set). These data sets were submitted to our algorithm. The plot compares the 

balance between sensitivity and specificity of the proposed method, with other existing methods. To 

evaluate the prediction Performance of this tool with other method is our algorithm (AUC=0.9169),. 
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MiRTif(AUC= 0.9028) and TargetMiner(AUC=0.8229).The true positive rate of independent test 

data set of TargetScan, RNAhybrid, and miRanda. The compares the sensitivity of the proposed 

method of our method with other existing independent test data sets - TargetScan, RNAhybrid, and 

miRanda. To evaluate the prediction sensitivity of method, it was tested with TargetScan, RNAhybrid 

and miRanda datasets and sensitivity values of 0.8686, 0.6569 and 0.7980 were respectively achieved 

[17], [18], [19], [20], [21], [29], [30]. 

4. CONCLUSION 

We propose a novel computational method for miRNA target prediction from CDS sequences, which 

can identify all known miRNA targets. Scanning the motif region in CDS sequences, first ~7 nt at the 

5' end of the miRNA is particularly important for target site recognition. The dynamic programming 

alignment aligns the two sequences and the resulting miRNA::mRNA duplex is further classified 

(with SVMlight) for a post-processing filtering of the targets [12, 13] to reduce false positive miRNA 

target prediction. The sensitivity, specificity, overall accuracy and AUC indicate that the overall 

performance of the algorithm is good for miRNA target prediction. The results of the ROC curve 

indicate the true positive rate of this tool. In this work, we have employed an algorithm for the 

prediction of miRNA targets. The novelty of our approach lies in the use of an initial motif search 

(7mer) (supplementary-2, table 5), which reduces computational time. The algorithm uses a three-

step strategy for finding potential miRNA targets in genomic sequences based on motif search, 

Dynamic Programming algorithm, and a trained SVM classifier. Our algorithm compares favorably 

to other algorithms, both in terms of overall performance and when making highly specific 

predictions. We believe that our algorithm will be an important algorithm for finding the target sites 

of known miRNAs. We performed the same feature filtering and SVM parameter optimization steps. 

71 feature parameters were used for training the SVM classifier (miRNA::mRNA) complementarities 

[13], [15], [16], [35], [36]. BK polyomavirus Viral miRNAs can target to the host cell environment 

is achieved by targeting cellular network for favorable to completion of the viral life cycle. Viruses 

can mimic human cellular miRNAs target to control existing molecular regulatory pathways for 

influence directly target mammalian RNA virus genomes.The function of BK polyomavirus viral 

miRNAs target remains unclear to host cellular molecular regulatory pathways. In this study, we 

investigated the role of the BK polyomavirus miRNA in the human gene ( supplementary-7 & 8). 
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Supplementary 

Supplementary-1, position specific base pairings 

 

Supplementary-2, Seed (6mer, 7mer, and 8mer) in 464 experimentally verified positive miRNA-mRNA target 

interactions 
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