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ABSTRACT: Anopheles stephensi is one of the dominant vector species in India transmitting 

malaria in human. Vector population control is one of the strategies of integrated vector 

management. Traditionally pesticides have been in use to control mosquitoes. Acetylcholinesterase 

(AChE) is the target for these pesticides. Three-dimensional structure of AChE for this prevalent 

mosquito species in India, is wanting in databases. To overcome the insecticide resistance, novel 

and safer compounds are of need and structure of target protein as well to employ the principle of 

drug discovery. In structural Biology, theoretical modelling (Homology/Comparative modelling) 

of protein is an important approach helps in solving some of the important biological problems 

viz. site directed mutagenesis, mutation causing disease, molecular function and structure based 

design of specific ligands. Homology model of AChE with primary sequence has been generated 

with template protein having 41% sequence identity, refined model has been validated, subjected 

to stereochemistry check and superimposed.   
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1.INTRODUCTION 

Mosquitoes are well known vectors which transmit infectious diseases between humans or from 

animals to humans. Aedes, Anopheles and Culex are the three genera of mosquitoes prevalent and 

cause diseases like Chikungunya, Dengue fever, Lymphatic filariasis, Rift Valley fever, Yellow 

fever, Zika (by Aedes sp.), Malaria and Lymphatic filariasis (by Anopheles sp.), Japanese 

encephalitis, Lymphatic filariasis and West Nile fever (by Culex sp.) (WHO 2017, Web-1). This 

mosquito species can affect more than half of the world's population as latter live in areas of 

mosquito presence. The purpose of vector control is to limit contact between humans and vectors, 

and to reduce vector populations so that they are unable to transmit disease so human suffering 

and deaths can be prevented. Integrated vector management [1] includes multiple interventions; 

environmental, biological and chemical (use of insecticides) [2] control measures. 

Organophosphates and Carbamate (OPs-irreversible and Cs-reversible) block the enzyme 

Acetylcholinesterase (EC 3.1.1.7) [3], [4] resulting severe disturbance in neurotransmission. 

Hence, these insecticides are called acetylcholinesterase inhibitors-AChEIs [5]. AChE breaks 

down the acetylcholine the neurotransmitter into choline and acetic acid, a reaction necessary to 

allow a cholinergic neuron to return to its resting state after activation [6]. AChEIs inhibit the 

cholinesterase enzyme from breaking down ACh (acetylcholine) causing accumulation of it at 

cholinergic synapse [7] leading to uncontrolled, rapid twitching of some muscles, paralyzed 

breathing, convulsions, and in extreme cases, death. Insecticide resistance has been a problem in 

all insect groups that serve as vectors of communicable diseases [8], [9], [10]. Hence, 

acetylcholinesterase inhibitors (AChEIs), interacting with the enzyme as their primary target, are 

applied as relevant drugs and toxins [5]. Anopheline mosquitoes transmit malarial parasite in 

human. There are 465 recognized species of genus Anopheles [11] of them about 70 species have 

capacity to serve as vector for malaria [12]. Anopheles stephensi (Liston 1901) has been 

recognized as a dominant vector species (DVS) of malaria in urban areas of the Persian Gulf and 

India [13[, [14], [15]. There has not been resolved, 3-dimensional structure of AChE present yet in 

the databases for Anopheles stephensi. Comparative modelling (Homology modelling) approach 

can replace this want and help curb menace of mosquito by subjecting the model in searching new 

pesticides. Since proteins with similarity in their sequences have shown similar structures, 

structure of a protein with its primary sequence known can be elucidated. Comparative modelling 

(Homology modelling) is the computational technique of predicting the structure of proteins where 

the primary sequence (amino acids) of a protein (target) if shares significant similarity (~30% or 

more) with sequence that of the protein (template) with resolved 3-dimensional structure. The 

steps involved in homology modelling are (a) Identification of template (b) Alignment of 

sequences: target and template (c) Model building (d) Refining and validation of model [16]. 
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2. MATERIALS AND METHODS 

2.1. Primary sequence of Target 

Primary sequence of AChE for An. stephensi [17] was procured form UniprotKB [18] with Entry: 

P56161. This sequence was also found in NCBI protein database with ACCESSION No. 

1808210A. 

2.2. Template Identification 

The sequence was submitted to NCBI’s (Web-2) standard protein BLAST server in fasta format 

[19]. PSI-BLAST (Position-Specific Iterated BLAST) [20] algorithm with BLOSUM62 (amino 

acid substitution matrix) as score parameter and the search set of same genus (Taxonomy ID: 

7165) were opted to select suitable template from PDB [21] (Web-3). RID-DERNY4B5014 

identity number was generated for this BLAST. The program first performed a gapped BLAST 

database search from which a position-specific score matrix was constructed, which replaced the 

target sequence for the next round of database searching. PSI-BLAST was iterated till significant 

alignment of target sequence with database was found.  

2.3. Alignment of sequences 

Target sequence with 664 residues and template with 553 residues were realigned using Clustal 

Omega [22] where HMM Iterations: 5, full distance matrix during; initial alignment and alignment 

iteration had been the parameters for alignment.  

2.4. Model Building 

For the process of homology or comparative modelling of protein three-dimensional structures, 

MODELLER was used [23]. Target and template sequences in alignment was provided to 

MODELLER which calculated a model containing all non-hydrogen atoms by implementing 

comparative protein structure modelling by satisfaction of spatial restraints [24].  

2.5. Refining and validation of Model 

The loop in between residues 131-166, was modelled with MODELLER. This model was 

submitted to GalaxyWeb Refine (Web 4) for protein structure refinement and side chain quality 

[25]. The method first did rebuild side chains and performed sidechain repacking and subsequent 

overall structure relaxation by molecular dynamics simulation. Refinement of the model was 

measured by GDT-HA [26] and MolProbity score [27] where Ramachandran plot was reobtained 

with UCSF Chimera alpha v 1.13 (buid 41662) [28]. 

2.6. Superimposing Model: 

AChE model for Anopheles stephensi was superimposed with that of its template to identify 

structural similarities specially the folds in structures. The overall root mean square deviation 

(RMSD) [29] of all corresponding C-alpha atoms gave an idea of the similarity between the two 

structures. Matchmaker tool [30] in UCSF Chimera [28] was used for superimposition. 
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3. RESULTS AND DISCUSSION 

3.1. Primary sequence of Target 

Amino acid sequence of Anopheles stephensi AChE with 664 residues and 74,629 Mass (Da) in its 

canonical form is as under: 

>sp|P56161|ACES_ANOST Acetylcholinesterase OS=Anopheles stephensi OX=30069 PE=3 

SV=1 

MFVNQRTRRPYMSVFVLVLGAAVICPAYGIIDRLVVQTSSGPIRGRSTMVQGREVHVFNGVPFAKPPVDSLRFKKPVPA

EPWHGVLDATRLPPSCIQERYEYFPGFAGEEMWNPNTNVSEDCLYLNIWVPTKTRLRHGRGLNFGSNDYFQDDDDFQRQ

HQSKGGLAMLVWIYGGGFMSGTSTLDIYNAEILAAVGNVIVASMQYRVGAFGFLYLAPYINGYEEDAPGNMGMWDQALA

IRWLKENAKAFGGDPDLITLFGESAGGSSVSLHLLSPVTRGLSKRGILQSGTLNAPWSHMTAEKALQIAEGLIDDCNCN

LTMLKESPSTVMQCMRNVDAKTISVQQWNSYSGILGFPSAPTIDGVFMTADPMTMLREANLEGIDILVGSNRDEGTYFL

LYDFIDYFEKDAATSLPRDKFLEIMNTIFNKASEPEREAIIFQYTGWESGNDGYQNQHQVGRAVGDHFFICPTNEFALG

LTERGASVHYYYFTHRTSTSLWGEWMGVLHGDEVEYIFGQPMNASLQYRQRERDLSRRMVLSVSEFARTGNPALEGEHW 

PLYTRENPIFFIFNAEGEDDLRGEKYGRGPMATSCAFWNDFLPRLRAWSVPSKSPCNLLEQMSIASVSSTMPIVVMVVL 

VLIPLCAWWWAIKKNKTPPHPQVILETRAFMH 

3.2. Template Identification 

PDB ID: 5X61 chain-B [31] with 553 residues, 39% identity with target, 87% query cover and 

with Evalue 5e -144 is the identification of template in PSI-BLAST (Table 1). The identified 

template is AChE of Anopheles gambiae shown in Figure 1. 

3.3. Alignment of sequences 

Target sequence with 664 residues and template with 553 residues were realigned (Figure 2) using 

Clustal Omega [22] where HMM Iterations: 5, full distance matrix during; initial alignment and 

alignment iteration had been the parameters for alignment. Percent Identity between two sequences 

has been 41.7%. 

3.4. Model Building  

MODELLER generated a reliable homology model (Figure 3) for Anopheles stephensi-AChE target 

sequence. 

3.5. Refining and validation of Model 

Refined model by GalaxyWeb Refine, produced 5 models. The model with the best validation score is 

as in Table 2. 

GDT-HA measures backbone structure accuracy of the protein model whereas Molprobity measures 

overall physical corrections in structure of protein and includes Clash Score; Number of atomic 

clashes per 1000 atoms, Poor Rotamers; rotamers outliers and Ramafavoured. Ramachandran [32] 

favoured backbone torsion angles for residues are in the model plot (Figure 4). 
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3.6. Superimposing Model 

Pairing used both sequence and secondary structure, allowing similar regions of the structures to be 

superimposed even when their sequence similarity has been low ~41%. Needleman-Wunsch 

algorithm [33] using BLOSUM-62 [34] substitution matrix superimposes two structures (Target 

model and  

Template) where RMSD between 518 pruned atom pairs is 0.292 Å  (Figure 5) and sequence 

alignment score = 1437.9. 

 

Figure 2. Target and Template Sequence alignment 

4. CONCLUSION 

Acetylcholinesterase is an important target enzyme in terms of controlling pests including insect-

flies-vectors. More than 60 Anopheline mosquito species have been responsible for harbouring 

malaria across the globe but only one of these species has got AChE 3D structure resolved. 

Anopheles stephensi is an important vector species transmitting malaria in urban India causing 

human suffering and deaths. This homology model of AChE would be the key in structure based 

ligand design to inhibit the enzyme in turn curbing the population of the major vector for malaria. 
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