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ABSTRACT: Glioblastoma (GB) type IV, the most vulnerable brain tumor is worsened by the role of 

glioblastoma stem cells leads to multiple targets in its disease physiology. The objective of the present 

study is to identify potential key genes, miRNAs and pathways in glioblastoma stem cells (GBSCs) 

using meta-analysis approach. Using the seven publicly available GEO datasets, 368 differentially 

expressed genes (DEGs) are actively involved in the GBSCs population in which 172 and 196 DEGs 

were down-and up-regulated in the GBSCs samples, respectively. Grouping of DEGs revealed the 

primary involvement of blood coagulation process (P = 9.16E-06) whereas its associated immunological 

processes including complement and coagulation cascades (P = 6.56E-06) were noted in the KEGG 

pathway enrichment analysis. Furthermore, the protein-protein interaction networks showed the 

prominent hub of proteins: Topoisomerase (DNA) IIα (TOP2; degree= 24), Von Willebrand factor 

(VWF; degree= 23), Fibronectin 1 (FN1; degree= 21) and Secreted phosphoprotein 1 (SPP1; degree= 

21). Overall, results suggested the active role of several genes associated with the blood coagulation and 

complement coagulation cascades in GBSCs and could be regarded as potential biomarkers. 
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1. INTRODUCTION 

Glioma, especially high-grade tumor Glioblastoma (GB) type IV, is the most common and 

aggressive type of brain tumor causes death globally [1]. Among human cancers, the malignant 

primary brain tumor of GB show five years worst survival rate [2]. Several advanced treatments are 

currently available to treat GB including surgical resection, radiotherapy, and systematic 

chemotherapy. Standard maximal safe surgical resection followed by temozolomide chemotherapy 

and radiation forms the safest option of treating GB cases and increasing the survival time to 14.6 

months [3, 4]. However, the high inter and intra-tumor heterogeneity of GB brain tissues [5] makes 

it difficult to distinguish tumor tissues from normal ones and diagnose in the early stage of GB 

disease progression. To better develop novel therapeutics, researchers around the globe have revived 

the current understandings of cellular and molecular mechanisms that lead to GB tumor initiation 

and progression and found glioblastoma stem cells (GBSCs) as the new direction towards 

therapeutic and development purpose of a biomarker for GB cases [6]. Functionally, they target new 

groups of cells in the brain and easy to differentiate normal and tumor cells. On the basis of these 

tumor cells differentiations, several astrocytomas are classified in mitosis, vascular endothelial 

proliferation or necrosis in which two or three characteristics are used to diagnose GBSCs [7]. 

Reported glioblastoma stem cells (GBSCs) biomarkers include CD133, nestin, NANOG, SALL4, 

STAT3, SOX2, c-Myc, Olig2, Bmi1, CD44, L1CAM, and KLF4 [8]. MiR138 is useful as a 

prognostic biomarker target for MXD1 gene in glioblastoma stem cells [9, 10]. With adcent of new 

technologies, thousands of genes expression profiles with its experiments are available across 

various commercially and publically available databases. These data can be further used to discover 

common or new therapeutic approaches in the area of cancer heterogeneity, drug discovery, 

biomarker development, key genes identification to understand cancer progression [11]. Especially, 

microarray technology helps to unveil thousands of genes expressed at a time which can be 

associated with meta-analysis approach in order to find the best targets [12, 13]. In this study, we 

aim to analyze the gene expression data and differentially expressed genes (DEGs) in GBSCs using 

meta-analysis approach. Computational analysis was performed using the microarray datasets on 

tissues samples of GBSCs: GSE46531, GSE45899, GSE20736, GSE18150, GSE4536, GSE7181 

and GSE57978. In addition, functional and pathway enrichment analyses were performed. Moreover, 

protein-protein interaction (PPI) and miRNA-target regulatory networks were also constructed. 

2. MATERIALS AND METHODS 

Microarray data retrieval from ArrayExpress database 

Seven public microarray datasets related to glioblastoma stem cells (GBSCs) were taken from 

ArrayExpress database. The selected datasets were based on two platforms: [Affymetrix Human 

Genome U133 Plus 2.0 HG-U133_Plus_2] and Affymetrix GeneChip Human Gene 1.0 ST Array 

[HuGene-1_0-st-v1]. The datasets were chosen on basis of the following criteria: every single data 
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set must contain at least one stage with ≥1 <what is the unit here> of tumor samples and the total 

number of samples must be more than 10 in any stage. The selected datasets encompassed 149 

patient samples which were subjected to meta-analysis. These datasets were downloaded from 

ArrayExpress ((https://www.ebi.ac.uk/arrayexpress/) [14] as the raw data (.CEL files) (Table 1).  

Table 1: Summary of Glioblastoma stem cells (GBSCs) microarray datasets 

Datasets Array type Total 

GSE46531 [15] HG-U133_Plus_2 12 

GSE45899 [16] HG-U133_Plus_2 12 

GSE20736 [17] HG-U133_Plus_2 6 

GSE18150 [18] HG-U133_Plus_2 6 

GSE4536 [19] HG-U133_Plus_2 101 

GSE7181 [20] HG-U133_Plus_2 6 

GSE57978 [21] HuGene-1_0-st 6 

Identification of differentially expressed genes (DEGs) from multiple microarray datasets 

R Package version 3.3.1 (www.bioconductor.org/) with simpleaffy [22] and limma packages [23] 

were used for differential gene expression analysis. Retrieved microarray datasets were converted 

from probe-level into expression values and rectified background noise by quantile normalization 

and probe summarization. The t-test [24] was performed to identify significantly expressed DEGs 

in GBSCs patient samples by adopting the thresholds: P<0.05 and |log2FC (fold change)| >1. A heat 

map was also generated using Z-score normalization of log2 expression values to illustrate the 

relative expression levels of DEGs in GBSCs samples. 

Gene Ontology (GO) and pathway enrichment analysis of DEGs  

Gene ontology (GO) enrichment analysis was performed as a part of functional annotation study to 

understand the biological significance of the DEGs through different biological processes, and their 

functional roles in the GBSCs pathways. Online available software GeneCodis [25] 

(http://genecodis.cnb.csic.es) was used to perform this analysis. In addition, the pathway enrichment 

analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [26] was 

conducted. 

Protein-Protein (PPI) and Protein-miRNA network construction 

StringDB (https://string-db.org/) database was used for the retrieval of known DEGs protein-protein 

and protein-predicted protein regulatory network. The database contains pre-computed storage of 

experimental, investigational and analysis based results [27]. The StringDB was used to analyze the 

interactions between identified DEGs using confidence (combined score: 0.9) and a protein-protein 

interaction network was constructed with its predicted protein. The cut-off degree was derived from 

the nodes calculation in the PPI network degree and the nodes with high degree than cut-off were 

counted to be hub proteins in the PPI network. Based on the constructed PPI, GeneCodis online 
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software miRNA prediction was utilized to generate PPI and miRNA-target gene results and 

constructed the regulatory networks of protein-protein, protein-predicted protein and miRNA- target 

gene in GBSCs, visualized using Cytoscape (v3.4.0) software [28]. 

3. RESULTS AND DISCUSSION 

Glioblastoma is a malignant brain tumor initiated by glioma-initiating cells (GICs; also called 

glioma cancer stem cells) is one among the causes of high death rate in the world [29]. It has the 

high degree of tumor heterogenicity, as a result several oncogenic targets playing an active role in 

disease progression and the available therapies are effective only to some extent. In this scenario, 

therapeutic targets sorted based on differential gene expression will be the most effective approach 

to treat GBSCs. 

Identification of differentially expressed genes (DEGs) related to GBSCs 

Significantly expressed genes obtained from the above step were classified on the basis of cut-off 

criteria including log P <0.05 and |log FC| >1.0 for up-regulated genes and |log FC| >-1.0 for down-

regulated genes and finally obtained 368 DEGs which comprised 196 up-regulated and 172 down-

regulated genes. 

Pathway enrichment analysis 

The KEGG pathway enrichment analysis recognized significant DEGs in 10 pathways (Table 2). 

The most significant and highly enriched pathways were complement and coagulation cascades 

(P=6.56E-08), TGF-beta signaling pathway (P = 5.17E-06) and systematic lupus erythematosus (P 

= 1.35E-07) (Table 2). 

Table 2: The top 10 enriched KEGG pathway of DEGs 

KEGG_ID Pathway Gene_count P-value 

hsa04610 Complement and coagulation 

cascades 

10 6.56E-08 

hsa04350 TGF-beta signaling pathway 9 5.17E-06 

hsa05322 Systematic lupus erythematosus 9 1.35E-07 

hsa05150 Staphylococcus aureus infection 7 2.15E-07 

hsa04512 ECM-receptor interaction 8 1.17E-05 

hsa05140 Leishmaniasis 7 2.67E-06 

hsa04510 Focal adhesion 11 2.58E-06 

hsa05020 Prion disease 5 1.47E-05 

hsa05142 Chagas disease (American 

trypanosomiasis) 

7 4.77E-05 

hsa05323 Rheumatoid arthritis 6 0.0001 
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KEGG pathways enrichment analysis resulted in highly enriched pathways such as complement and 

coagulation cascades, TGF-beta signaling pathway, and systematic lupus erythematosus. 

Complement and coagulation cascade pathways (genes=10, P=6.56E-08) were strongly activated in 

GBSCs, PLAUR, C1QA, C3, A2M, SERPINA1, SERPINE1, VWF, F5, C1QC and C1QB. From 

these genes, VWF and SERPINE1 genes belong to most of the variants. VWF gene is present in the 

endothelial cells of neurons and it promotes bridge formation of platelets adhesion between sub-

endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. It also acts as the 

chaperone for coagulation factor VIII, during injury site. Bibliographic literature listed that its 

expression in the GBSCs is very heterogenous causing mutational changes and as a result, cytokine 

is dysregulated which in turn hampers the regulation of apoptosis, cell proliferation, differentiation 

and tissue homeostasis [30, 31]. Another highly expressed gene is SERPINE1 which is a part of 

blood-brain barrier, also known as plasminogen activator inhibitor (PA-1). It is also a primary 

regulator in the plasminogen-plasmin system which inhibits plasminogen activator. We note in the 

present study that high expressions of this gene may lead to lysosomal degradation of plasminogen 

activator complexes and its reappearance on the cell surface will disrupt the locomotion and 

direction of migration of cells and as a result, GBSCs patients survival rate decreases substantially 

[32].  

Gene ontology (GO) enrichment analysis 

To understand up and down-regulated differential gene expressions in the selected GBSCs samples, 

we performed GO enrichment analysis. The GO term for DEGs were significantly enriched in 

biological process (BP) that included the blood coagulation (GO: 0007596, P = 9.12E-06), negative 

regulation of transcription from RNA polymerase II promoter (GO: 0000122, 3.88E-05) and BMP 

signaling pathway (GO: 0030509, P = 1.8E-05), while for molecular functions (MF) the enriched 

terms was protein binding (GO: 0005515, P = 8.83E-17), and for cellular compartments (CC), the 

GO enriched terms were cytosol (GO: 0005737, P = 9.67E-07), extracellular region (GO : 0005576, 

P = 7.79E-07) and extracellular space (GO : 0005576, P = 7.79E-07) (Figure 1). 
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Figure 1: The top list of enriched GO terms for DEGs (P value≤ 1.06E-07, logFc≤1). A. biological 

process for DEGs; B. molecular functions for DEGs; C. cellular component for DEGs. 

Protein-Protein interaction (PPI) network 

The PPI network is represented by two components: nodes denote proteins while edges indicate 

interactions between two proteins. The efficiency of a network could be traced by the node shape 

and the greater the degree of connection the number of proteins they interacted. The PPI network 

was constructed using 172 down-regulated and 196 up-regulated DEGs and visualized using 

Cytoscape software that showed 231 nodes and 562 edges. The significant hub proteins identified 

from this effort included TOP2A (Topoisomerase (DNA) II Alpha, Degree= 24), VWF (Von 

Willebrand Factor, Degree=23) whereas FN1 (Fibronectin 1), SPP1 (Secreted Phosphoprotein 1) 

had degree=21. Other hub proteins namely EGR1 (Early Growth Response 1), FOS (Fos Proto-

Oncogene, AP-1 Transcription Factor Subunit), PTGS2 (Prostaglandin-Endoperoxide Synthase 2) 

and SERPINE1 (Serpin Family E Member 1) secured same Degree= 20. The predicted proteins in 

this network were IFT140 (Intraflagellar Transport 140), TMEM240 (Transmembrane Protein 204), 

ADC (Arginine Decarboxylase), NAA38 (N(Alpha)-Acetyltransferase 38, NatC Auxiliary Subunit) 

(Figure 2). 
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Figure 2: Protein-protein interaction network for DEGs. Red nodes represent protein 

products of up-regulated DEGs, green nodes represent protein products of down-regulated 

DEGs, blue nodes represent predicted protein product of up and down DEGs and the lines 

between two nodes denote the interactions between them. 

From the PPI interaction network, we found that TOP2A and SPP1 are most prominent hub protein 

and involved in immune response and tissue remodeling leads to tumor progression by increasing 

migration, invasion of cancer stem cells in the tumor [33]. However further validation of DEGs 

required, and suggest that additional information could give new dimension to the identification of 

new targets for GBSCs and possibly the development of better cancer chemotherapeutic approaches. 

The integrated regulatory network of miRNA-target gene 

Using Genecodis online software with its MicroRNA annotation function, the regulatory miRNA-

target gene network was built by connecting 144 nodes (134 DEGs and 10 miRNAs families) with 

207 edges. In this network, notable genes were found to interact with multiple miRNAs such as 
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Leucine Rich Repeat Containing 17 (LRCC17; targeted by hsa-miR-556-3p, hsa-miR-568, hsa-

miR-299-3p and hsa-miR-19b-2*) and Tropomyosin 1 Alpha (TPM1; targeted by hsa-miR-556-3p, 

hsa-miR-338-3p, hsa-miR-302c* and hsa-miR-542-3p) (Figure 3).  

 

Figure 3: Integrated miRNA-target gene: Red nodes present up-regulated DEGs, and green nodes 

represent down-regulated DEGs protein products, Hexagonal nodes represents miRNAs and the 

lines between two nodes show interaction between them. 

4. CONCLUSION 

We performed a computational analysis on GBSCs and identified 196 up-regulated and 172 down-

regulated DEGs in GBSCs samples compared with control samples. SERPINE1 and VWF genes 

were highly enriched in the blood coagulation biological process to disrupt complement and 

coagulation pathway which leads to the high risk of GBSCs. In the protein-protein interaction 

network TOP2A, VWF, FN1, SPP1, EGR1, FOS, PTGS2, and SERPINE1 genes encoded protein 

were identified which plays crucial roles in GBSCs. PPI network predicted proteins were IFT140, 

TMEM240, ADC and NAA38. Additionally, LRCC17 targeted by hsa-miR-556-3p, hsa-miR-568, 

hsa-miR-299-3p and hsa-miR-19b-2* and TPM1; targeted by hsa-miR-556-3p, hsa-miR-338-3p, 

hsa-miR-302c* and hsa-miR-542-3p. Hence, these identified miRNAs may contribute to the 

pathogenesis of GBSCs and may be potential therapeutic targets. However, these predictions require 

further experimental validation. 
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