www.rjlbpcs.com

Life Science Informatics Publications



Life Science Informatics Publications

Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences

Journal Home page http://www.rjlbpcs.com/



# Original Review Article DOI: 10.26479/2018.0405.45 SECONDARY METABOLITE PRODUCTION FROM MEDICINAL PLANTS FOR THE TREATMENT OF FEMALE INFERTILITY: A REVIEW Falguni R. Patel, Nainesh R. Modi\*

Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India.

**ABSTRACT:** Folk medicines play an important role to cure human diseases. In India, there are various system of medicinal practices like Ayurveda, Unani, Homoeopathy, Allopathy, and Siddha etc. The common female gynecological disorders are such as amenorrhea, dysmenorrheal, leucorrhea, menometrorrhagia, metrorrhagia, oligomenorrhea, hemorrhage, gonorrhea, syphilis which leads to the female infertility. Plant tissue culture technique occupies the key role in the enhancement of secondary metabolites production by using different elicitors which yield an interesting product of plant constituents leads to second green revolution. In this review, updated information is gathered on scientifically proven medicinal plants used for the treatment of female infertility. The aim of this review is to highlight on various plant drugs which is enhanced by different elicitors that may help investigators to identify suitable medicinal plants to cure female infertility.

KEYWORDS: Secondary metabolites, Infertility, Gynecological disorder, Elicitors.

# Corresponding Author: Dr. Nainesh R. Modi\* Ph.D.

Associate Professor, Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India. Email Address: nrmodi@gujaratuniversity.ac.in

### **1.INTRODUCTION**

According to the United Nations Population Division, "Fertility is the natural human capability of producing offspring [1]. According to recent studies by the World Health Organization (WHO), approximately 8-10% of couples are facing some kind of infertility problems [2]. Infertility is an inability to conceive and produce the child. Eight out of every ten women trying for a baby, will fall pregnant within the first six months [3] and the reasons behind it are such as weight, diet, smoking,

Patel & Modi RJLBPCS 2018 www.rjlbpcs.com Life Science Informatics Publications other substance abuse, environmental pollutants, infections, medical conditions, medications, the quantity and quality of the sperm and family medical history could affect conception in couples [1]. Assisted Reproductive Technology has been carried out such as IVF, ICSI but common people cannot afford the cost of such procedures [3]. There is various system of medicine like Ayurveda, Unani, Homoeopathy, Allopathy, Siddha and physiotherapy with acupuncture are been effective to enhance the pregnancy [4]. Approximately 90% of the ingredient used in Ayurveda, Unani, Siddha and Homeopathy medicine are plant based over in modern Allopathic medical system has 25% of its formulation from herbal medicine [5]. Hence, the use of herbal medicine is increasing day by day, due to the concept of natural drugs are cheaper with no fear of any side effects [6,7.8.9]. Due to over exploit of traditional medicinal plants, low yielding and loss of growth habitat, the genetic biodiversity of traditional medicinal plants is under a continuous threat of extinction [10]. Because of this there is need to provide alternate methods to propagate, cultivate and conserve the common as well as endangered medicinal plants and also to maintain the balance of eco-system [5].

| Common    | Botanical   | Family         | Parts                   | Activities             | References |
|-----------|-------------|----------------|-------------------------|------------------------|------------|
| name      | name        |                | used                    |                        |            |
| Guyebabla | Acacia      | Mimosaceae     | Bark To cure leucorrhea |                        | [4]        |
|           | farnesiana  |                |                         | and menorrhagia        |            |
|           | Willd. (T)  |                |                         |                        |            |
| Satamuli  | Asparagus   | Liliaceae      | Root                    | To cure leucorrhea     | [4,11]     |
|           | racemosus   |                |                         | and abnormal           |            |
|           | Willd.(H)   |                |                         | discharges of semen.   |            |
| Neem      | Azadirachta | Meliaceae      | Stem,                   | To control menstrual   | [4,12]     |
|           | indica      |                | bark and                | cycle and also help    |            |
|           | A.Juss (T)  |                | fruit                   | in follicular          |            |
| Bhuikumra | Іротоеа     | Convolvulaceae | Root                    | To cure                | [4,11]     |
|           | paniculata  |                |                         | menorrhagia,           |            |
|           | L.R.Br      |                |                         | gonorrhoea, and        |            |
|           |             |                |                         | syphilis. It also acts |            |
|           |             |                |                         | as an aphrodisiac.     |            |
| Kemanch   | Мисипа      | Fabaceae       | Seed                    | To cure leucorrhoea    | [4,11]     |
|           | pruriens    |                |                         | and menrrhagia. And    |            |
|           | (Linn.) DC  |                |                         | also effective both    |            |
|           | (C)         |                |                         | for men and women      |            |
|           |             |                |                         | in case of impotency   |            |

Table 1: Significance of medicinal plants used to cure female infertility

| Patel & Modi RJLBPCS 2018 |             | www.rjlbpcs.com |            | Life Science Informatics Publications |        |
|---------------------------|-------------|-----------------|------------|---------------------------------------|--------|
| Bhuiamala                 | Phyllanthus | Euphorbiaceae   | Whole      | To cure menorrhagia                   | [4]    |
|                           | niruri      |                 | plant      | and gonorrhoe                         |        |
|                           | Hoof.f. non |                 |            |                                       |        |
|                           | Linn (H)    |                 |            |                                       |        |
| Pila berela               | Sida acuta  | Malvaceae       | Leaf,      | To cure leucorrhoea                   | [4,11] |
|                           | Burm. f.(S) |                 | root ,seed | and gonorrhea                         |        |
| Aswagandha                | Withania    | Solanaceae      | Root       | To cure leucorrhoea,                  | [4]    |
|                           | somnifera   |                 |            | menstrual troubles                    |        |
|                           | Dunal. (H)  |                 |            | and very effective in                 |        |
|                           |             |                 |            | case of female                        |        |
| 1                         |             |                 | 1          |                                       |        |

There are two main approaches in the conservation of medicinal plants - in-situ and ex-situ conservation. In *in-situ* conservation of plants in their natural habitats, while in *ex-situ* methods, plant biotechnology offers the most appropriate way of conservation and large-scale production of plants using plant tissue culture techniques. Plant tissue culture is the science & art of growing plant cell, tissues, organs or whole plants on semi-solid or in liquid synthetic nutrient media under aseptic and controlled environmental condition. Higher plants are valuable source for natural drugs, which include flavours, fragrances, essential oils, phytochemical compounds collectively referred as Secondary metabolites [13]. This review, highlights the important medicinal plants and their drugs which help to cure female infertility and conserve by using the advanced biotechnological methods. Plant cell and organ cultures are important techniques to obtain valuable metabolites through callus and cell suspension culture. In vitro propagation via indirect organogenesis or embryogenic calli is an important for isolation of active secondary metabolites which are valuable sources of pharmaceutical industries. Plant cell cultures have great advantages in biosynthesis and metabolite production from a very small amount of plant material leads to develop a higher amount of natural drugs for herbal medicines in short period of time. Cell suspension culture offer an effective mechanism when incorporated with elicitors into the cell which can lead to production of novel natural drugs not previously found in whole plants [13]. Elicitors is a stress agent which enhances the production of secondary metabolites in particular tissue, organ and cells. There are two types of elicitors, biotic (biological origin) and abiotic (non-biological origin) [14,15]. Biotic elicitors are polysaccharide, yeast extract, bacterial and fungal [16] while abiotic elicitors are divided into three group chemicals (heavy metals, mineral salts and gaseous toxins), Physical (light, thermal, osmotic, drought and salt stress), and Hormonal (salicylic acid, jasmonic acid, sucrose etc.). In the recent developments, elicitors have opened a new avenue for the production of secondary metabolite compounds [17].

Patel & Modi RJLBPCS 2018

www.rjlbpcs.com

# Table 2: Different elicitors used in production of crucial secondary metabolites from some important medicinal plants

| Sr  | Plant Names        | Explants   | Elicitors             | Compounds      | References |
|-----|--------------------|------------|-----------------------|----------------|------------|
| No. |                    |            |                       |                |            |
| 1   | Azadirachta indica | Seeds      | Glucose, Hydrolyzed   | Azadirachtin   | [18]       |
|     | A.Juss (T)         |            | casein and Methyl     |                |            |
|     |                    |            | jasmonate             |                |            |
| 2   | Azadirachta indica | Seeds      | Cyanobacteria:        | Azadirachtin   | [19]       |
|     | A.Juss (T)         |            | Anabaena sp., Nostoc  |                |            |
|     |                    |            | carneum,              |                |            |
| 3   | Azadirachta indica | Shoot      | Salicylic acid,       | Azadirachtin   | [20]       |
|     | A.Juss (T)         | segments   | Jasmonic acid,        |                |            |
|     |                    |            | Cadmium chloride and  |                |            |
|     |                    |            | Sodium chloride       |                |            |
| 4   | Azadirachta indica | Hairy root | Claviceps purpurea    | Azadirachtin   | [21]       |
|     | A.Juss (T)         |            |                       |                |            |
| 5   | Azadirachta indica | Seeds      | Salicylic acid,       | Azadirachtin   | [22]       |
|     | A.Juss (T)         |            | Chitosan, Jasmonic    |                |            |
|     |                    |            | acid, Methyl          |                |            |
|     |                    |            | jasmonate, Yeast      |                |            |
|     |                    |            | extract               |                |            |
| 6   | Asparagus          | Nodal      | Fusarium oxysporium   | Shatavarins    | [23]       |
|     | racemosus          | segments   | and Rhiizopus         |                |            |
|     | Willd.(H)          | and roots  | stolonifera           |                |            |
|     |                    |            | UV and Salicylic acid |                |            |
| 7   | Asparagus          | Nodal      | UV-B                  | Shataverins    | [24]       |
|     | racemosus          | segments   |                       |                |            |
|     | Willd.(H)          |            |                       |                |            |
| 8   | Mucuna pruriens    | Seeds      | Methyl jasmonate,     | L-Dopa (3, 4-  | [25]       |
|     | (Linn.) DC (C)     |            | Chitin, Pectin, Yeast | dihydroxy-L-   |            |
|     |                    |            | extract               | phenylalanine) |            |
| 9   |                    | Roots      | Cadmium chloride,     | Withanolides   | [26]       |
|     | Withania somnifera |            | Aluminum chloride     |                |            |
|     | Dunal. (H)         |            | and Chitosan,         |                |            |
| 10  | Withania somnifera | Cell       | pH and Sucrose        | Withanolide A  | [27]       |

| Patel & Modi RJLBPCS 2018 |                                         | www.rjlbpcs.com Life Science Informatics Publications |                                                                                                                                                         |                                                                                                                                                   |      |  |
|---------------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                           | Dunal. (H)                              | suspension                                            |                                                                                                                                                         |                                                                                                                                                   |      |  |
| 11                        | <i>Withania somnifera</i><br>Dunal. (H) | Hairy root                                            | рН                                                                                                                                                      | Withanolide A                                                                                                                                     | [28] |  |
| 12                        | Withania somnifera<br>Dunal. (H)        | Hairy root                                            | Methyl jasmonate and<br>Salicylic acid                                                                                                                  | Withanolide<br>A, Withanone,<br>and Withaferin<br>A                                                                                               | [29] |  |
| 13                        | Withania somnifera<br>Dunal. (H)        | Leaves                                                | Calcium chloride,<br>Copper sulphate and<br>Cinnamic acid,<br><i>Fusarium solani,</i><br><i>Alternaria alternate</i> and<br><i>Verticillium dahliae</i> | Withaferin A                                                                                                                                      | [30] |  |
| 14                        | Withania somnifera<br>Dunal. (H)        | leaf,<br>cotyledon<br>and<br>internode<br>explants    | Aluminium chloride,<br>Chitosan                                                                                                                         | withanolides                                                                                                                                      | [31] |  |
| 15                        | Withania somnifera<br>Dunal. (H)        | leaf                                                  | Methyl jasmonate and<br>Salicylic acid                                                                                                                  | withanolide A,<br>withanolide B,<br>withaferin A,<br>and withanone,<br>12-deoxy<br>withastramonoli<br>de, withanoside<br>V, and<br>withanoside IV | [32] |  |
| 16                        | Withania somnifera<br>Dunal. (H)        | leaf                                                  | Chitosan, Nitric oxide,<br>Jasmonic acid, Acetyl<br>salicylic acid                                                                                      | withaferin A,<br>withanolide A                                                                                                                    | [33] |  |

# 2. CONCLUSION

Greater efforts are required to document this traditional knowledge of local medicinal plants which are safe, less costly and eco-friendly method for the treatment of gynecological disorders. There is a scope for the large–scale production of secondary metabolites available from these plants by using the elicitors as an agent. Biotic and abiotic elicitors enhanced the secondary metabolites production

Patel & Modi RJLBPCS 2018 www.rjlbpcs.com Life Science Informatics Publications for isolation of bioactive compound from important medicinal plants to cure gynecological disorders. One of the main problems for secondary metabolites production is the limited knowledge of biosynthetic pathways and their controlling enzymes and genes regulation. As the little information about pathways of these plants is needed to understand, for isolation of large amount of natural drugs, to treat many gynecological disorders.

### **CONFLICT OF INTEREST**

The authors report no conflicts of interest.

#### REFERENCES

- 1 Karamchedu S. Women's Infertility-An Ayurvedic Perspective, 2013. pp.7.
- 2 Roupa Z, Polikandrioti M, Sotiropoulou P, Faros E, Koulouri A, Wozniak G, Gourni M. Causes of infertility in women at reproductive age. Health Science Journal. 2009;3(2).
- 3 Gaware, V. M., Parjane, S. K., Merekar, A. N., Pattan, S. R., Dighe, N. S., Kuchekar, B. S., & Godge, R. K. Female infertility and its treatment by alternative medicine: a review. J Chem Pharm Res, 2009 ;1(1), 148-162.
- 4 Tripathi R, Dwivedi SN, Dwivedi S. Ethno-medicinal plants used to treat gynecological disorders by tribal people of Madhya Pradesh, India. International Journal of Pharmacy and Life Sciences (IJPLS). 2010;1(3):160-9.
- 5 Washimkar VB, Shende M. Plant tissue culture in herbal medicinal plants-review. Ejpmr,2016; 3(11),696-699.
- 6 Memon AR, Randhawa MA, Arain AA. Herbal medicine use: knowledge and attitude in patients at tertiary care level in northern border region of Kingdom Saudi Arabia. JSZM2017;8(3):1241-1244
- 7 Tangkiatkumjai M, Boardman H, Praditpornsilpa K, Walker DM. Prevalence of herbal and dietary supplement usage in Thai outpatients with chronic kidney disease: a cross-sectional survey. BMC complementary and alternative medicine. 2013;13(1):153.
- 8 Gawde SR, Shetty YC, Pawar DB. Knowledge, attitude, and practices toward ayurvedic medicine use among allopathic resident doctors: A cross-sectional study at a tertiary care hospital in India. Perspectives in clinical research. 2013;4(3):175.
- 9 Chaudhari VM, Avlaskar AD Role of Shivlingi in Infertility. J Homeop Ayurv Med.2013; 2: 141.
- 10 Chaturvedi M, Chaturvedi AK. Concept of Plant Tissue Culture in Ancient Science WSR Vriksha-Ayurveda. Imperial Journal of Interdisciplinary Research. 2016; 20;3(1)
- 11 Das DC, Sinha NK, Das M. The use of medicinal plants for the treatment of gynaecological disorders in the eastern parts of India. Indian J Obstet Gynecol Res. 2015 ;2(1):16-27.
- 12 Roop JK, Dhaliwal PK, Guraya SS. Extracts of Azadirachta indica and Melia azedarach seeds Inhibit folliculogenesis in albino rats. Brazilian Journal of Medical and Biological Research. 2005;38(6):943-7.

Patel & Modi RJLBPCS 2018www.rjlbpcs.comLife Science Informatics Publications13 Razdan MK. Introduction to plant tissue culture. Science Publishers; 2003.

- 14 Gorelick J, Bernstein N. Elicitation: An underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. InAdvances in agronomy 2014; 124: 201-230. Academic Press.
- 15 Namdeo AG. Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev. 2007; 1;1(1):69-79.
- 16 Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J. Elicitation, an effective strategy for the biotechnological production of bioactive highadded value compounds in plant cell factories. Molecules. 2016;21(2):182.
- 17 Naik PM, Al-Khayri JM. Impact of abiotic elicitors on in vitro production of plant secondary metabolites: a review. J Adv Res Biotech. 2016;1(2):7.
- 18 Rodrigues M, Festucci-Buselli RA, Silva LC, Otoni WC. Azadirachtin biosynthesis induction in Azadirachta indica A. Juss cotyledonary calli with elicitor agents. Brazilian Archives of Biology and Technology. 2014; 57(2):155-62.
- 19 Devi BP, Vimala A, Sai I, Chandra S. Effect of cyanobacterial elicitor on neem cell suspension cultures. Indian Journal of Science and Technology. 2008;1(7):1-5.
- 20 Garoosi G, Gholami B, Hosseini R. Considerable Azadirachtin Production in Neem Cell Culture under Abiotic Elicitor Induction. Journal of Medicinal Plants and By-products .2016; 2: 195-204
- 21 Satdive RK, Fulzele DP, Eapen S. Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. Journal of Biotechnology. 2007;128(2):281-9.
- 22 Prakash G, Srivastava AK. Statistical elicitor optimization studies for the enhancement of Azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochemical Engineering Journal. 2008;40(2):218-26.
- 23 Pise M, Rudra J, Begde D, Bundale S, Nashikkar N, Upadhyay A. Elicitor induced production of Shatavarins in the cell cultures of Asparagus racemosus. Indian J Plant Sci. 2013; 2:100-6.
- 24 Pise M, Upadhyay A. Medium alkalinization and induction of phenylalanine ammonia lyase are involved in the early responses of UV-B mediated hyperproduction of shatavarin. Int.J.Curr.Res.Aca.Rev.2015;5(3):153-160
- 25 Raghavendra S, Ramesh CK, Kumar V, Moinuddin Khan MH. Elicitors and precursor induced effect on L-Dopa production in suspension cultures of Mucuna pruriens L. Frontiers in Life Science. 2011;5(3-4):127-33.
- 26 Sivanandhan G, Selvaraj N, Ganapathi A, Manickavasagam M. Enhanced biosynthesis of Withanolides by elicitation and precursor feeding in cell suspension culture of Withania somnifera (L.) Dunal in shake-flask culture and bioreactor. PLoS One. 2014 ;9(8):e104005.

Patel & Modi RJLBPCS 2018 www.rjlbpcs.com Life Science Informatics Publications
27 Nagella P, Murthy HN. Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresource technology. 2010 ;101(17):6735-9.

- 28 Praveen N, Murthy HN. Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Industrial crops and products. 2012;35(1):2413.
- 29 Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A. Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture (PCTOC). 2013 ;114(1):121-9.
- 30 Chitturi D, Venisetty RK, Molmoori RK, Kokate CK, Apte SS. Enhanced bioproduction of withaferin A from suspension cultures of Withania somnifera. Annals of Biological Research. 2010;1(2):77-86.
- 31 Sivanandhan G, Arun M, Mayavan S, Rajesh M, Mariashibu TS, Manickavasagam M, Selvaraj N, Ganapathi A. Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Industrial crops and products. 2012;37(1):124-9.
- 32 Sivanandhan G, Arun M, Mayavan S, Rajesh M, Jeyaraj M, Dev GK, Manickavasagam M, Selvaraj N, Ganapathi A. Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L.) Dunal. Applied biochemistry and biotechnology. 2012;168(3):681-96.
- 33 Doma M, Abhayankar G, Reddy VD, Kishor PB. Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L.).Indian Journal of Experimental Biology.2012;50:484-490.