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ABSTRACT: Protein interaction network helps to understand the general mechanism behind the 

complex biological systems which in turn provide insights into disease mechanism and pathways. 

It can be modulated towards drug discovery for the infectious organism. With vast sequence data 

availability, computational methods play a major role to infer protein-protein interaction. The 

present study explores sequence-based information to infer protein interaction network in 

Mycobacterium tuberculosis, a causative agent of one of the leading infectious diseases Tuberculosis. 

A model was built using support vector machine (SVM) based classification through amino acid 

conjoint triad from interacting protein pairs from the DIP database. 162,528 protein interaction pairs 

of M. tuberculosis H37Rv were identified through the model. It was observed that 53,602 protein 

pairs were already known to be interacting or co-expressing in multiple microarray experiments. 

These protein pairs were considered as significant interaction pairs. A protein interaction network 

built for core interactions had 53,424 edges connected across 1,368 nodes. The highest degree was 

observed for pknB, a serine/threonine-protein kinase which may serve as a potential drug target for 

tuberculosis. Further, two conserved hypothetical proteins, Rv3879c and Rv3909, were found to be 

hub proteins. Exploration of such hubs will assist in understanding the regulation of genes and 

disease processes which may lead to develop better intervention strategies for the disease. 
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1. INTRODUCTION 

Now is the time for modern biology to switch from the study of single molecules to network-based 

systems. The functions of various cellular processes are determined by protein interactions rather 

than an individual protein. Though, a large number of protein-protein interactions (PPIs) are 

predicted with experimental methods, it covers only a fraction of total protein-protein interactions 

[1, 2]. In this regard, computational methods play a vital role in achieving the complete protein 

interaction network [3, 4, 5]. Various in silico methods are proposed to identify PPIs such as 

phylogenetic profile, gene operon and domain-based methods [6, 7, 8]. Recently, it is reported that 

the identification of PPIs based on only sequence information is more universal [9, 10]. Amino acid 

conjoint triad method identifies PPIs using only protein sequence information [10]. The sequence 

based method is powerful for identifying protein-protein interactions and in exploring the networks 

for newly discovered proteins with unknown biological functions. In spite of large research efforts, 

tuberculosis is still one of the leading infectious diseases in the world [11, 12]. Multidrug resistance 

and HIV co-infections provoke to investigate a novel system to combat the disease [13]. A protein 

interaction network of M. tuberculosis H37Rv helps in understanding cellular physiology and also 

identifying suitable drug targets [14]. The present study employs amino acid conjoint triad method 

to identify interacting protein pairs in M. tuberculosis H37Rv. Since the interaction network is a 

large scale real world graphical data, it is an ideal challenge for bioinformatics research. 

2. MATERIALS AND METHODS 

1. Dataset Preparation 

Protein interaction data for M. tuberculosis H37Rv was downloaded from DIP databases [15]. These 

interacting pairs were used to prepare positive and negative training examples for conjoint triad 

method [10]. During this process, 343 triads of amino acids with similar physiochemical roles were 

generated. The frequency of each triad was calculated and then normalized to represent a protein 

sequence. An interaction pair was obtained by concatenating two proteins with normalized triad 

frequencies. Therefore, each interaction pair had 686 conjoint triads of amino acids. Since the 

protein interactions are symmetrical, a reverse directional calculation was also employed. In order 

to prepare negative training examples, Euclidean distances among the proteins from the interaction 

pairs were calculated. Protein pairs with Euclidean distance value above the average of smallest and 

largest Euclidean distance values were used as negative training examples. 

2. Generation of SVM Model 

In order to generate a SVM model, radial basis function (RBF) from LIBSVM software [16] was 

employed. Positive and negative training examples were scaled together with default parameters. 

The scaled data was then randomized 1000 times and grid search was performed to identify the best 

C and γ parameter values for the RBF kernel. The scaled data was trained using the best C and γ 

values to generate a SVM model. 
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3. Prediction of PPIs 

Complete proteome set of M. tuberculosis H37Rv was downloaded from NCBI genome 

[https://www.ncbi.nlm.nih.gov/genome/]. Conjoint triad frequencies were calculated and 

normalized for each of the protein sequences. Protein pairs were generated by concatenating every 

protein sequence with every other protein sequence. If a protein pair was predicted positive by the 

built SVM model, it was considered as interacting pairs. 

4. Inferring Protein interaction map 

Predicted protein interaction pairs were compared with interaction data from the STRING database 

[17, 18] and the MPIDB database [19]. They were also compared with already known interactions 

from Wang et al., [20] and Liu et al., [21] data. Further, predicted interaction pairs were validated 

using co-expression analysis [22]. During this process, microarray experiments from NCBI GEO 

[https://www.ncbi.nlm.nih.gov/geo/] were filtered with “Mycobacterium tuberculosis” and a sample 

size of at least 10. Further, only experiments with ORF names were considered. The experimental 

data was log base 2 transformed and imputed with k-nearest neighbor method. It was quantile 

normalized to remove sources of variations. Expression profiles of the proteins in the predicted 

protein interactions were extracted from the normalized data and Pearson correlation coefficients 

were calculated. The pairs of proteins with correlation value of at least 0.8 in more than one 

microarray experiment were considered as co-expressing proteins pairs [22]. Predicted protein pairs 

supported by interaction data from the STRING database, Wang et al., data, Liu et al., data or co-

expressing in multiple microarray experiments were considered as significant protein interaction 

pairs. An interaction map was generated for these significant pairs using VisANT software [23, 24]. 

High degree nodes and clustering coefficients were derived from the interaction network. 

5. Functional Enrichment 

Top 5 percent high degree nodes of the protein interaction network were considered as hubs. These 

hubs were used to find their functional enrichment in ontologies such as biological process, cellular 

component and molecular function through PANTHER over-representation test [25]. P-value cut off 

is set to 0.05 in order to obtained significant ontological terms. Bonferroni correction for multiple 

testing was also considered during the analysis. 

3. RESULTS AND DISCUSSION 

1. Protein-protein interactions 

It was observed that the training data set had 38 positive examples and 444 negative examples. The 

grid search of the scaled data generated the best C value of 8.0 and γ value of 0.0078125. A SVM 

model generated using these values through RBF kernel was used to predict protein interactions in 

M. tuberculosis H37Rv. In the present study, a total of 162,528 PPIs were predicted using the built 

SVM model. It was observed that the predicted interactions were scattered among 1766 proteins. 

However, it leads to the coverage of 45.12 percent of total proteins of M. tuberculosis H37Rv. 
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2. Known Interacting Pairs 

It was observed that some of the predicted PPIs were already reported in the existing literature such 

as Wang et al. and Liu et al. data. Some of them were also available in the databases such as STRING 

database and MPIDB database. Further, 75 microarray experiments were found to have ORF names 

in expression data. Co-expression analysis of microarray experiments for the proteins in the 

predicted PPIs was also performed. The Table 1 represents the number of predicted PPIs that overlap 

with existing literature and databases as well as co-expresses in multiple microarray experiments. It 

is clear from the table that 59,019 PPIs overlaps with existing knowledge. It was found to have 

53,602 unique PPIs. Therefore, more than 32.98 percent of the predicted PPIs were supported from 

the know data. These predicted PPIs were considered as significant proteins interaction pairs in the 

present study. 

Table 1: Overlapping PPIs 

Sr. No. Source Dataset Size Overlapped PPIs 

1 STRING database 796,610 15,433 

2 MPIDB database 19 5 

3 Liu et al. 43,136 1,304 

4 Wang et al. 8,242 60 

5 Co-expression analysis 1,705,422 42,217 

  Total PPIs 59,019 

3. Protein Interaction Network 

Significant protein interaction pairs were used to construct a protein interaction map of M. 

tuberculosis H37Rv. It was observed that there were 183 isolated nodes with a degree of 1. These 

nodes were removed to get a core interaction network. The Figure 1 represents an interaction map 

generated from the core interaction network using the VisANT software. The network has 53,424 

black colored lines called edges representing core protein interactions and 1,368 green colored boxes 

called nodes representing the interacting proteins. Visualization of the interaction network indicates 

that it is a simple network. Degree distribution follows the power law; hence the interaction network 

is a scale-free network [26]. The highest degree was observed for Rv0014 (pknB) with the value of 

871 followed by Rv2524c (fas) with the value of 663 and Rv2379c (mbtF) with the value of 648. 

When the degree threshold was set at 50 and above, 608 hub nodes were identified. Correlation of 

node degree with clustering coefficient was found to be 0.44 indicating that it is a well clustered 

network. The average of clustering coefficients of the nodes was found to  
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Figure 1: Protein Interaction network of M. tuberculosis H37Rv 

be 0.459 suggesting that there are many nodes which were well clustered. There were 30 fully 

connected subgraphs. These subgraphs represent related functions of the protein and strongly 

suggest that they could form a complex [27]. As the network is a scale-free network, deletion of 

high degree nodes will destroy the interaction network significantly. Therefore, they can be 

exploited as potential targets for effective control and cure of the disease. 

4. Functional annotation 

Top 5 percent of hubs were employed for functional annotation [28, 29]. It was observed the cutoff 

degree to be 378 which was possessed by three nodes, viz., Rv2447, Rv3879c and Rv2931. Thus 

value 5 percent of hubs constituted 33 nodes. Functional annotation of these nodes was performed 

using PANTHER [16] over-representation test. It indicated that most of the hub proteins were 

involved in fatty acids, amino acids and lipid metabolic processes. Further, they were mostly 

enriched in transferase, hydrolase and ligase activities. 

5. Functional categories 

Top 5 percent hub proteins were categories based on Tuberculist [30] data. The Figure 2 indicates 

the proportion of hubs under different categories. It is clear from the figure that most of the hubs are 

involved in lipid metabolism, cell wall and cell processes. Further, it was observed that Rv3879c 

and Rv3909 the two conserved hypothetical proteins which are also hubs. Further, it was observed 
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that 16 hubs are essential genes as observed from the Database of Essential Genes [31, 32]. 

Figure 2: Tuberculist categories of Hubs 

4. CONCLUSION 

In the present study, support vector machine based conjoint triad was efficiently employed to predict 

PPIs of M. tuberculosis H37Rv. Using this approach, 162,528 interacting pairs were identified. It 

was observed that more than 32.98 percent of predicted PPIs overlap with already known PPIs. 

Therefore, this approach is effective to identify PPIs using only sequence information. The proteome 

coverage of predicted PPIs was 45.12. This suggests that different approaches can be employed to 

predict number of interacting pairs in order to achieve a complete protein network of M. tuberculosis 

H37Rv. Hubs were identified which may serve as potential drug targets for tuberculosis. Further, 

conserved hub hypothetical proteins were also found which can be explored further to understand 

their potential role in cellular physiology and disease mechanism of the organism. 
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