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ABSTRACT: One of the most common types of cancers in the women is breast cancer.  In spite of 

many modern therapeutic options the mortality associated with breast cancer is predominantly 

because of the metastasis and bone is the common metastatic site. Understanding the molecular 

mechanisms that aid cancer cells to survive at the metastatic site helps in developing biomarkers that 

would help in predicting and also developing novel strategies to prevent this organspecific tropism. 

In order to understand how breast cancer cells home and colonize in the bone metastatic niche after 

dissemination from the primary site, we performed meta-analysis of the gene expression profiles 

derived from the microarray data and tried to identify the hub genes that are involved in this process 

through network analysis. We propose FN1, NEDD4 and HDAC1 are hub genes that probably aid in 

promotion of breast cancer at metastatic site. 
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1. INTRODUCTION 

One of the most common types of cancers in the women is breast cancer [1]. Morbidity and 

mortality associated with breast cancer are increasing and is attributed primarily to metastasis [2]. 

Since bone is frequent site of metastasis in breast cancer, associated pathological conditions include 

hypercalcemia, bone fractures, spinal cord compression, severe pain, coma and death. A deep 

understanding of the molecular mechanism underlying bone metastasis helps in identifying key 
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components that drive cancer cells towards bone. Genetic transformations in the cancer cells aid 

these cells in their metastatic journey that begins by evading primary site followed by entering into 

circulation and finally reaching their destination that is bone. Cancer cells express certain genes and 

whose normal expression is otherwise restricted to bone cells, is referred to as osteomimicry, this 

attracts metastatic cancer cells towards bone. Some of the well characterized osteomimetic factors 

are CXCL12, Cadherin 11, ENPP1, BSP and osteoactivin [3]. Once inside the bone, breast cancer 

cells are known to interact with osteoblasts that in turn up-regulates RANKL which is known to 

induce the activation of osteoclasts. RANKL binds to RANK and activates various transcription 

factors like nuclear factor κB (NFκB), activator protein-1 (AP-1) and nuclear factor of activated 

T-cells cytoplasmic 1(NFATc1) these transcriptional factors upregulate molecules like TRAP, 

Cathespin K increasing the osteoclasts activity leading to osteolytic leisions [4]. Further 

extracellular matrix associated factors like MMP2 and MMP9  also cause degradation of bone 

resulting in the release of immobilized growth factors that aid in homing  and growth of the tumor 

cells in bone [5]. Blood flow and adhesion molecules on the tumor cells also contribute to the 

survival of the breast cancer cells in the bone. Subtype of breast cancer and estrogen receptor status 

also show association with bone metastasis. Estrogen receptor positive breast cancer and especially 

luminal sub-type are prone to cause higher incidence of bone metastasis [6]. In essence changes in 

expression patterns of multiple genes, help in progression of breast cancer cells through metastasis 

and that their functional characterization simultaneously helps in, in-depth understanding of bone 

metastasis [7]. In this regard high throughput techniques help in identification of global expression 

patterns of genes, proteins and mRNA in various disease conditions. Many gene expression 

profiling studies were reported to identify genes that are associated with bone metastasis in breast 

cancer [8]. Various groups identified multiple gene signatures associated with cell cycle, DNA 

replication, proliferation, survival, angiogenesis, migration, osteoclastogenesis, extracellular matrix 

alterations and invasion which aid in progression of the metastatic cells towards bone [9] [10]. But 

the molecular mechanisms underlying the cancer cells that survive in the bone are not very clear. 

Therefore we ventured to understand such molecular mechanisms initially using microarray data 

and meta-analyzing it and subsequently constructing protein networks. Although microarray data 

helps in global gene expression profiles in various disease conditions, interactions among these 

genes cannot be interpreted. Systems level understanding of the diseases from the high throughput 

data can be obtained by constructing networks which consist of a set of genes or proteins called 

nodes and functional relationships among nodes is represented by the edges. Interactions among 

these genes or proteins result in particular biological processes [11]. Related pathways involved in a 

particular biological process can also be identified and further these can be visualized easily. Results 

are interpreted based on the topological features of the network. Our focus in this manuscript is 

based on the microarray data meta-analysis and resulting differentially expressed genes that were 
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used as input to build protein interaction network. This exercise was carried to identify hub genes 

that are involved in the progression of bone metastasis. 

2. MATERIALS AND METHODS 

Data Sets 

Publicly available microarray datasets were searched in NCBI Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/). Following key words and their combinations were used: 

“Breast cancer, bone metastasis, microarray and gene expression dataset”. Following information 

was extracted from each identified data set, GEO accession number, sample type, platform, number 

of bone metastatic and other metastatic samples and references (Table 1). Human case studies, 

comparable conditions, untreated samples and availability of raw and processed data were set as 

criteria for inclusion and were strictly followed. Studies in other animals and integrated analysis of 

expression profiles were excluded.  

Differential Expression of Genes 

Differentially expressed (DE) genes can be identified based on meta-analysis of microarray datasets. 

We used Network Analyst program (http://www.networkanalyst.ca/faces/home.xhtml) a web 

interface for integrative microarray meta-analysis [12]. For the removal of the batch effect ComBat 

procedures utilizing empirical Bayes methods were employed [13]. Annotation of the datasets was 

performed after uploading the datasets into program by converting the gene symbols into respective 

Entrez IDs. Quantile normalization of the data was employed and the datasets were checked for data 

integrity before proceeding further [14]. For the statistical analysis we employed combined effect 

size and cochrans Q test was used and Random effects model (REM) was selected for the 

meta-analysis [15]. Using these DE genes as input, binary interactions were obtained based on 

curated protein-protein interaction databases downloaded from InnateDB  [16]. To identify hub 

genes, topology analysis which considers entire network or module analysis which breaks entire 

network into highly connected sub-networks called modules can be used. Here we employed 

topology analysis to identify hub genes. Topological measures that are utilized for selection of hub 

genes are degree and betweenness. The hub genes with greater degree and betweenness are very 

important in signaling pathways and can either be utilized as biomarkers or therapeutic targets. 

Enrichment Bioinformatics Analysis 

The official genes symbols identified were uploaded to the Database for Annotation, Visualization 

and Integrated Discovery (DAVID: http://david.abcc.ncifcrf.gov) and the enrichment analyses of 

the GO terms for the biological process, molecular function and pathways involved was performed 

using the functional clustering annotation tools. The default options with high classification 

stringency were used. Finally, the cluster names were extracted from most biologically relevant GO 

term that was assigned to the cluster [17]. 
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Transcriptional Factor Analysis of Regulatory Networks 

In order to understand upstream factors regulating DE genes we employed eXpression2Kinases 

(X2K) a web based tool. Significant transcriptional factors were extracted based on their P value. 

X2K web is freely available [18]. 

3. RESULTS AND DISCUSSION 

Identifying Microarray Data Sets For Meta-Analysis 

After applying inclusion criteria the data set GSE 14020 [19] was selected. This super-series 

consists of sub-series GSE14018 and GSE14017 and were considered for meta-analysis in Network 

Analyst, a network-based analytical tool for gene expression profiling, meta -analysis 

and interpretation. In GSE14017 metastatic breast cancer samples were analyzed using 

affymetrix (U133plus2) and in GSE14018 samples profiled on U133A platform were analyzed on 

affymetrix. The study included 58 breast cancer metastases from different organs like bone, brain, 

lung and liver, 29 samples were included in GSE14017 series in which seven are bone metastatic 

samples  and in GSE14018  of  the 35 samples 8 samples are bone metastatic,. Detailed dataset 

information is shown in Table 1. 

Table 1: The table shows the data sets that are considered for the meta-analysis 

  Data Set Platform No. of Samples 

Data1 GSE14017 
Affymetrix Human 

Genome U133 Plus 2.0 

Array 

29 

Data2 GSE14018 
Affymetrix Human 

Genome U133A Array 
35 

Batch Effect Adjustment 

The primary goal of the study was to identify the differentially expressed genes (DEGs) in bone 

metastasis of breast cancer using selected datasets for meta-analysis. For effective integration of the 

data, batch effects must be removed prior to meta-analysis. There are many approaches that are 

useful in batch adjustment for the gene expression data. Some of them are Distance-weighted 

Discrimination (DWD), Surrogate Variable Analysis (SVA), Geometric ratio-based method 

(Ratio_G) and ComBat [20]. Here, data was subjected to the well-established ComBat procedures to 

remove the batch effects [21].  Intermixing of the samples from all the data sets after batch 

adjustment procedure was confirmed by visual inspection of using principal component analysis 

(PCA) as shown in the Figure 1.  
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Figure 1: Principal component analysis (PCA) of the microarray dataset. Red indicates data1 and 

green indicates data2. Please refer table 2 for data1 and data2. 

Identification of Differentially Expressed Genes Signatures by Meta-Analysis 

To identify differentially expressed gene signatures in bone metastasis microarray data sets (Table 1) 

were analyzed using Network Analyst. Bone metastatic samples are compared with other distant 

metastatic samples corresponding to lung, liver and brain. The processed data are subjected to 

differential analysis. Combined effect size was employed to find the differentially expressed genes. 

There are two methods with which effect size can be calculated, FEM (Fixed effect model) and 

REM (Random Effect Model). Based on the values obtained from  Cochrans Q test, statistical 

heterogeneities among the samples are estimated and method to calculate effect size was decided 

[22]. When the estimated Q values have approximate chi- squared distribution then FEM is selected 

and incase deviation from the chi- squared distribution exists then REM is selected. Based on our 

cochrans Q test analysis  we selected REM which considers random effects due to non-biological 

heterogeneities like different microarray platforms to calculate the effect size [23]. From microarray 

meta-analysis we have identified a total of 837 DEGs across the datasets with a P value <0.05 of 

which 242 genes were underexpressed and 596 genes were overexpressed. The top up-regulated and 

down regulated differentially expressed genes are shown along with their combined size effect and 

P value in the Table 2. 455 genes were gained and 256 were lost and 126 DE genes were expressed 

in meta-data and data from our meta-analysis which is represented as Venn diagram in Figure 2(a). 

The heat map of the differentially expressed genes is shown in the Figure 2(b). Top few 

differentially expressed genes that are down-regulated are LAMC3, ITGB8, PQBP1, TMEM177, 

EXOSC4, GPR37, ZNF165, RIPK4, RALY and top  up-regulated genes include LRRC15, MMP13, 

CTSK, COL8A2, FBN, OLFML2B and PCOLCE. 
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Table 2: The table shows top 20 genes that are differentially expressed in the bone metastasis. 

Entrez Id’s collected from NCBI; name indicates gene symbol and combined ES is effect size. 

Up-regulated differentially expressed genes 

EntrezI

D 

Gene Symbol          Name CombinedES P val 

131578 LRRC15 Leucine Rich Repeat Containing 15 -3.7818 0.000885 

4322 MMP13 Matrix Metallopeptidase 13 -3.1727 1.01E-07 

1513 CTSK Cathepsin K -3.1011 4.95E-08 

1296 COL8A2 Collagen Type VIII Alpha 2 Chain -3.0397 1.96E-06 

2200 FBN1 Fibrillin 1 -2.9091 0.000116 

25903 OLFML2B Olfactomedin Like 2B -2.8695 4.15E-10 

5118 PCOLCE Procollagen C-Endopeptidase Enhancer -2.8317 0.030017 

8515 ITGA10 Integrin Subunit Alpha 10 -2.8186 4.15E-10 

4958 OMD Osteomodulin -2.8049 4.15E-10 

4286 MITF Melanogenesis Associated Transcription 

Factor 

-2.803 4.15E-10 

11096 ADAMTS5 ADAM Metallopeptidase With 

Thrombospondin Type 1 Motif 5 

-2.7649 0.000107 

Down-regulated Differentially expressed genes 

EntrezID Gene Symbol  Name CombinedES P val  

10319 LAMC3 Laminin Subunit Gamma 3   1.715 0.001724 

3696 ITGB8 Integrin Subunit Beta 8 1.4381 0.006725 

10084 PQBP1 Polyglutamine Binding Protein 1 1.403 0.000519 

80775 TMEM177 Transmembrane Protein 177 1.3618 0.00082 

54512 EXOSC4 Exosome Component 4 1.334 0.002075 

2861 GPR37 G Protein-Coupled Receptor 37 1.3253 0.001137 

7718 ZNF165 Zinc Finger Protein 165 1.2881 0.013337 

54101 RIPK4 Receptor Interacting Serine/Threonine 

Kinase 4 

1.2835 0.006548 

22913 RALY RALY Heterogeneous Nuclear 

Ribonucleoprotein 

1.2831 0.00162 
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Figure 2: a) Venn diagram showing number of DE genes gained and numbers lost in meta-analysis 

b) Heat map generated for the differential expression of genes involved in the bone metastasis. 

Expression levels of genes are represented as intensity of the color. Blue is lower intensity of 

expression and red indicates high expression. 
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Functional Annotation of the differentially expressed genes 

The differentially expressed genes were subjected to the DAVID analysis in order to identify the 

enriched GO terms and biological pathways. The most significant biological process that was 

enriched belonged to GO category extra cellular matrix organization (GO:0030198) with a P value  

6.58E-39, other significant terms that were enriched categories are cell adhesion (GO:0007155) 

with a P value of  2.08E-30, angiogenesis (GO:0001525) with P value 1.44E-17, osteoblast 

differentiation (GO:0001649) with P value  6.86E-09, skeletal system development (GO:0001501), 

with a P value of 3.87E-13, collagen catabolic process (GO:0030574) with a P value of 7.60E-19, 

collagen fibril organization (GO:0030199) with a P value of 2.26E-13 and extracellular matrix 

disassembly (GO:0022617) with a P value of 1.18E-11are shown in the figure. The molecular 

functions pertaining to protein binding (GO:0005515) with a P value 3.94E-28, integrin binding 

(GO:0005178) with a P value 8.14E-12, collagen binding (GO:0005518) with a P value 3.74E-11 

are among the most significantly enriched categories.  In order to understand the significant 

pathways that were enriched the DE genes were mapped to KEGG database. The top pathways that 

were significantly enriched include focal adhesion pathway (hsa04510) with a P value 2.07E-11, 

ECM-receptor interaction pathway (hsa04512) with a P value 1.47E-08 and pathways in cancer 

(hsa05200) with a P value 1.06E-07. The enriched biological processes, molecular functions and 

pathways are shown in Figure 3. The significantly enriched cellular components to which the DE genes 

belonged to were extracellular matrix, extracellular space and also extracellular exosomes.  

Hub Genes Identification 

Network based meta-analysis was conducted to find out the key hub genes among the DEGs 

obtained from the meta-analysis of different datasets. NetworkAnalyst, a web based tool was used to 

generate a protein-protein interaction (PPI) network by integrating the InnateDB interactome with 

the original seed of 838 DEGs. A large network was generated with 6975 nodes, and 17957 edges. 

For the better visualization of the networks minimally connected sub graph containing all seeds was 

constructed using zero order networks option. The top hub genes with their respective centrality 

scores are as follows ELAVL1 (Degree = 102, betweenness = 39979.03), FN1 (Degree = 49, 

betweenness = 18297.78), HDAC1(Degree = 31, betweenness = 7754.37), CTNNB1 (Degree = 26, 

betweenness = 6691.09), FYN(Degree = 23, betweenness = 5351.3), NEDD4 (Degree = 23, 

betweenness = 5081.17), JUN (Degree = 23, betweenness = 4485.1), CDH1 (Degree = 20, 

betweenness = 2304.3) as shown in the Figure 4. 
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Figure 3: Functional annotations of differentially expressed genes a) Biological processes that are  

enriched. b) Molecular functions enriched that are enriched c) The pathways in which the 

differentially genes are involved 

 

 

 

 

               

                            

  

3a 3b 

 

3c 

extracellular matrix

organization
cell adhesion

collagen catabolic process

angiogenesis

collagen fibril

organization
skeletal system

development
extracellular matrix

disassembly
cell migration

negative regulation of cell

proliferation
wound healing

collagen binding

integrin binding

calcium ion binding

extracellular matrix

structural constituent
heparin binding

extracellular matrix

binding
protein binding

platelet-derived growth

factor binding
SMAD binding

proteoglycan binding

0 10 20 30 40 50 60

ECM-receptor interaction

Focal adhesion

PI3K-Akt signaling pathway

Pathways in cancer

Protein digestion and absorption

TGF-beta signaling pathway

Proteoglycans in cancer

Arrhythmogenic right ventricular…

Adherens junction

Phagosome

Rheumatoid arthritis

Rap1 signaling pathway

Hypertrophic cardiomyopathy (HCM)

Dilated cardiomyopathy

Hippo signaling pathway

Regulation of actin cytoskeleton

Osteoclast differentiation

http://www.rjlbpcs.com/


Gudipati et al RJLBPCS 2018           www.rjlbpcs.com           Life Science Informatics Publications 

© 2018 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2018 Nov – Dec RJLBPCS 4(6) Page No.180 

 

                          

                                            4a                              

 

 

 

 

4b 4c 

 

Figure 4. Network based meta-analysis of hub genes. (A) Zero-order interaction network of shared 

DEGs obtained from meta-analysis; red nodes represents overexpressed and green nodes represents 

underexpressed DEGs. (B) PPI Subnetwork of most significant DEG that are over expressed with its 

interacting partners. (C) PPI Subnetwork of most significant DEG that are under expressed with its 

interacting partners.  
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Identification of Transcriptional Factors Associated With Hub Genes  

In order to understand the upstream factors associated with differentially expressed genes 

transcriptional factors that are associated are understood. The significant transcriptional factors that 

are associated with the differentially expressed genes are EP300 (E1A Binding Protein P300), 

WT1(Wilms Tumor 1), SOX2(Sex Determining Region Y-Box 2), EGR1(Early Growth Response 

1), PPARγ(Peroxisome Proliferator Activated Receptor Gamma), NRF2 (Nuclear Factor, Erythroid 

2-Like 2),  CLOCK (Clock Circadian Regulator), HNF4A (Hepatocyte Nuclear Factor 4 Alpha), 

SUZ12 (Suppressor Of Zeste 12 Protein Homolog). The transcriptional factors are shown along 

with the P value, Z score and combined score in the given in Table 3. 

Table 3: Transcriptional Factors That Are Involved Regulation Of DE Genes 

Transcription Factor P value Z-score Combined Score 

EP300 1.34E-28 -2.0125 129.1624673 

WT1 5.87E-30 -1.63001 109.711959 

SOX2 6.08E-30 -1.40196 94.31256988 

EGR1 5.49E-42 -0.92071 87.47340544 

PPARG 1.20E-34 -1.04427 81.56682644 

NRF2 1.78E-24 -1.48819 81.38061813 

NFE2L2 1.78E-24 -1.48819 81.38061813 

CLOCK 8.17E-21 -1.72625 79.84579411 

HNF4A 3.82E-43 -0.73275 71.56853191 

SUZ12 7.73E-36 -0.8376 67.7181651 

SOX2 7.97E-25 -1.20253 66.72674905 

DISCUSSION 

Primary aim of our work is to identify hub genes. Hub genes are known to play a critical role in 

organization of the network and are considered to be important in many biological processes. We 

hypothesize that the identified hub genes play a significant role in homing and colonization of breast 

cancer cells in the bone metastatic niche when compared to the non-hub genes. As discussed in the 

methods section ‘degree’ and ‘betweenness’ are the topological measures that can be used in the 

selection of these genes. Degree centrality refers to the number of edges to which the node is 

connected and betweenness centrality is the number edges that are passing through the particular 

node. As shown in the Figure 4(b) and 4(c) nodes with high degree centrality obtained from zero 
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order PPI network option are considered as hub genes. Although CTNNB, FYN and ELVAL1 have 

high degree centrality and are discussed elsewhere we restricted our discussion to the following hub 

genes FN1 with degree = 49, betweenness = 18297.78, HDAC1 with degree = 31, betweenness = 

7754.37 and NEDD4 with a degree = 23, betweenness = 5081.17. FN1 (Fibronectin 1) is a 250 kDa 

extracellular matrix associated glycoprotein and is a ligand for many integrins. Upon interaction 

with integrins many genes are activated resulting in their involvement in important biological 

process. Our enrichment analysis suggests that FN1 might have a key role in biological processes 

such as cell adhesion, extra cellular matrix organization, skeletal system development and 

angiogenesis at the bone microenvironment. Though FN1 functions are well understood at the 

primary breast cancer tissue but its implications at the metastatic site are not clearly understood (23, 

24). Probable role of FN1 in promoting osteolytic lesions could be by activating osteoclasts [26]. 

Further we found that it is associated in regulating multiple pathways like EMT-interaction pathway, 

focal adhesion pathway and also PI3K-Akt signaling pathway. Another interesting hub gene that we 

identified is NEDD4 (Neural Precursor Cell Expressed, Developmentally Down-Regulated 4). It is 

an E3 Ubiquitin protein ligase and is involved in the degradation of membrane proteins such as ion 

channels and transporters thus regulating their availability. Expression of NEDD4 in tumors is tissue 

specific, high expression is seen in prostate, colon, bladder and also breast cancers [28] and reduced 

expression is observed in neuroblastoma [29]. NEDD4 promotes tumor progression through 

multiple pathways like activating PI3K/AKT pathway by regulating PTEN (phosphatase and tensin 

homolog depleted on chromosome 10), suppressing the activity of p53 [30] and also by modulating 

RTK (receptor tyrosine kinases) signaling [31]. Interestingly, in breast cancers NEDD4 acts in 

PTEN independent pathways in tumor progression [32]. Our pathway analysis identified that 

NEDD4 is involved in endocytosis in the breast cancer cells at bone metastatic niche. One probable 

mechanism by which NEDD4 could increase RTK signaling and tumor progression is by reducing 

endocytosis of RTK [31]. HDAC1 functions by deacetylation of histones and chromatin 

condensation leading to epigenetic silencing. Transcription factors such as E2f, Stat3, p53, the 

retinoblastoma protein, NF-kB, TFIIE regulates cell homeostasis and are known to interact with 

HDAC1 [27]. Varied expression pattern of HDAC1 is seen in different cancers [28] and is 

overexpressed in prostate [29] and breast cancers [30]. Multiple studies have demonstrated the 

important role of HDAC1 in cancers, through transcriptional inhibition of tumor suppressor genes 

and thereby influencing cell cycle events [30]. Our results indicate that HDAC1 is down regulated in 

bone metastatic niche in contrast to its high expression in primary breast cancer tissues. We 

identified that from our enrichment analysis the key biological processes with which HDAC1 is 

associated is negative regulation of cell proliferation. Cancer cells tend to enter a state of dormancy 

for certain period after reaching the metastatic site through cell cycle arrest [31]. Therefore probable 

role of HDAC1 at the metastatic site could be to aid in cancer cell dormancy, by negatively 
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regulating cell cycle.  We have also identified transcriptional upstream factors regulating these DE 

genes that include EP300, WT1, SOX2, EGR1, PPARG, NRF2. We are in the process of 

experimentally validating the proposed genes that would help in utilizing them as biomarkers for 

bone metastasis. Our microarray meta-analysis identified 838 differentially expressed genes. The 

top up regulated gene that was differentially expressed is LRRC15 and has a combined effect size 

score of -3.7818 with an adjusted P value of 0.00088461. LRRC15 (Leucine Rich Repeat 

Containing 15) a membrane protein belongs to leucine rich repeat superfamily and is known to play 

an important role in cell-cell adhesion, trafficking and hormone receptor interactions [38].  High 

level of LLRC15 expression patterns are seen in the breast cancer tissues when compared with the 

normal tissues [39]. Our meta-analysis showed a comparable results to that of Klein et al., who also 

identified LLRC15 was one of the top differentially expressed gene in bone metastasis [40]. 

Therefore LLRC15 probably helps cancer cells in homing at the metastatic site. The top DE gene 

that was down regulated was LAMC3 (Laminin Subunit Gamma 3) is extracellular glycoprotein. It 

is involved in cell adhesion, differentiation, signaling, and metastasis. LAMC3 is known to be 

highly methylated in breast cancers [32]. Probable mechanism by which down regulation of 

LAMC3 promotes cancer progression at the bone could involve inhibiting DNA repair [33] or by  

promoting osteoclastogenesis and osteolytic leisions [34]. Further, this study highlights various 

biological processes, molecular functions, pathways that are associated with differentially expressed 

genes so as to understand their contribution towards progression of breast cancer at bone metastatic 

site. The highly enriched biological process was extracellular matrix organization. Extracellular 

matrix is composed of number of complex biomolecules that regulate many biological processes 

and also developmental processes. Extracellular matrix is associated with progression of tumors by 

promoting epethilial mesenchymal transition, dysregulate the behavior of the stromal cells, promote 

angiogenesis [35] and in essence it influences all the hall marks of the cancer described by Hanahan 

[36]. Cell adhesion, angiogenesis are also highly enriched terms that are associated with our DE 

genes which aid the cancer cells to home at the novel bone environment and promote 

neovascularization respectively. Collagen catabolic process is associated with breakdown of 

collagen in extracellular matrix. Large part of the extracellular matrix is made up of collagen and 

research indicates that collagen is involved in promoting tumor progression. Collagen changes are 

as associated with certain biomechanical signals that are sensed by both tumor and stromal cells that 

trigger cascade of biological events aiding tumor progression and also escaping immune 

surveillance [37]. DE genes are also associated with skeletal system development, these probably 

involve in osteomimicry that aid cancer cells to survive in the new metastatic niche and also cause 

osteolysis providing space as well as nutrition for the cancer cells. In a nutshell, cancer cells once 

enter into the bone acquire certain genetic alterations that aid them in performing novel biological 

processes by involving in various pathways so as to adapt and establish themselves in the bone.  
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4. CONCLUSION 

      In summary we identified differentially expressed genes between bone metastasis and other 

metastatic conditions. These genes were used to construct protein-protein interaction network to 

identify hub genes that are associated with progression of the breast cancer cells in the bone 

metastatic niche. Our analysis predicted the hub genes that are involved in various biological 

processes like cell adhesion, extracellular matrix regulation, skeletal development etc., and aid 

cancer cells in adapting and growing in the new microenvironment. Till date there are no proper 

biomarkers that indicate bone metastasis. Through our network analysis we nominate FN1, NEDD4 

and HDAC1 as promising hub genes and further in vitro and in vivo analysis of these markers are 

required to validate their potential as biomarkers in bone metastasis.   
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