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ABSTRACT: Screening potential protein targets and designing novel inhibitors is a major hurdle 

in drug development pipeline consuming enormous time and cost. Transglutaminase 2 (TG2) is a 

vital target expressed in malignant cells, especially during lung cancer. The biochemical pathway of 

TG2 is crucial for apoptosis in humans. In this view of its impact, identification and prediction of 

novel drug candidates against TG2 may provide valuable insights for combating tumor growth. This 

study focuses on screening novel drug molecules engrossed in three classes of TG2 inhibitors. 

Molecular descriptors are generated for each inhibitor based on their physicochemical 

characteristics. After feature reduction, seven molecular descriptors are selected for designing 

Quantitative Structure Activity Relationship(QSAR) models. Four different regression models are 

developed for the dataset, with elastic net regularization model yielding better performance by 

demonstrating Mean Square Error value(MSE) of 0.36656, followed by ridge model with MSE of 

2.4014. The performance of QSAR models is further evaluated by cross-validation and statistical 

parameters like RSS and error analysis. The results reflect that regression models can predict the 

relationship between drug descriptors and their activity for TG2 ligands. This model so developed 

can be implemented into a data driven system for identifying novel anti-TG2 molecules. 
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1.INTRODUCTION 

Lung cancer has become one of the prominent threats to global healthcare, with a death rate of one 

out of four deaths in both men and women. According to American Cancer Society, lung cancer 

contributes around 14% of new cancer prototypes, with the incidence of 222,500 new cases and 155, 

870 deaths in the United States [1]. Consequently, in India, the incidence of lung cancer has 

increased by around 11.3% of new cancer cases prototypes and by contributing to 13.7% of total 

deaths caused by cancer [2]. Depending on tumor size and stages of lung cancer several therapeutic 

regimens are available to treat lung cancer. Yet conventional treatments like chemotherapy and 

radiation therapy are associated with several adverse effects on the human system. It thereby 

becomes necessary to understand the pathology behind the diseases states for providing better 

insights to improve diagnosis. In this direction, identification of novel therapeutic targets expressed 

in lung cancer turns out to be an effective approach for designing better drug molecule [3]. 

Transglutaminase 2 (TG2) is the most widely expressed gene among the enzymes of 

Transglutaminase family. It is distributed among major cell types and tissues and plays a significant 

role in several biological processes. TG2 mediates post-translational modification of proteins by 

cross-linkage forming covalent bonds between lysine and glutamine groups in the Ca2+dependent 

mechanism [4]. Activation of Ca2+ is regulated by GTP binding via signaling pathways. Activated 

Ca2+, in turn, activates TG2 in intracellular environment. Up-regulation of TG2 levels within the 

cell can lead to malfunctioning resulting in Alzheimer’s, Parkinson’s disease, multiple sclerosis, 

celiac sprue along with tumor development. Overexpression of TG2is associated with malignant 

effects leading to tumor genesis, invasion, cell differentiation, and apoptosis [5]. As a consequence, 

TG2 is known to have a significant impact on lung carcinoma, especially towards non-small cell 

lung carcinoma [6]. Targeting TG2 protein may be valuable in identifying potential inhibitors 

against lung cancer.Several molecules are available in the literature which has potent inhibiting 

activities against TG2 isoforms. Some of the prominent ones are derivatives of 

Bromodihydroisoxazole (DHI), peptidomimetic derivatives along with natural and synthetic 

derivatives [7]. Consequently, new molecules are screened for their pharmacological properties to 

design novel drugs against TG2. Such molecules are being tested continuously under physiological 

conditions in pre-clinical and clinical settings. In this scenario, it is encouraging to design advanced 

strategies to screen molecules against TG2.Anti-cancer drugs against TG2 can be screened using 

experimental techniques like mass spectroscopy and chromatographic approaches. These techniques 

require manual intervention and are also cost-effective. Subsequently, it is also observed that there 

are limited TG2 inhibitor complexes derived from crystallographic studies [8]. As alternatives, 

insilico methodologies work effectively in reducing the cost incurred by experimental design. Of 

lately, techniques like pharmacophore mapping, molecular docking and quantitative structure 

activity relationship (QSAR) models are implemented for reducing the time scale in drug discovery 
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pipeline [9]. These approaches aid in detecting probable lead molecules based on physicochemical 

characteristics which in turn reduces the cost of chemical synthesis of drugs. QSAR models are 

constructed either based on targeted single-mechanisms based “local” models or by deploying multi-

mechanism based “global” models. Local models are confined to compounds having a single 

mechanism of action, while global QSAR models are developed to cover compounds having a wide 

range of mechanism of actions [10]. Previous literature suggests that global models are dynamic and 

accurate when compared to local models. This study focuses on developing global QSAR models 

for compounds having different modes of action against the TG2 protein. The QSAR models are 

developed by determining the predicted pIC50 values of these compounds. The values generated 

from the models are compared with the experimental pIC50 values to screen drug molecules against 

the TG2 protein. 

2. MATERIALS AND METHODS 

2.1Preparation of ligand dataset 

It is important to design an inhibitor that blocks specific functionality of target protein, rather than 

a generalized approach for all protein targets. It is commonly referred to as target-based drug 

discovery [11]. Keeping this in mind, the inhibitor dataset for TG2 protein is designed manually to 

avoid computational inaccuracies. Previous literature highlights three classes of inhibitors against 

the protein based on a different mechanism of actions namely competitive amine inhibitors, 

reversible and irreversible inhibitors. It is relevant to consider all the three categories of inhibitors, 

generating multiple inhibitor datasets [12]. A random sample of ten inhibitors is selected from each 

category of inhibitors resulting in thirty TG2 inhibitors to eliminate the probability of bias in data. 

The random sample is selected based on minimum IC50 value, as it is known fact that smaller 

amount of drug must inhibit the target protein effectively. The information from experimentally 

known inhibitors is obtained for each of the three subsets of inhibitors resulting in thirty inhibitors 

[13] . Such a dataset having multiple classes of inhibitors are generally referred to as multiple class 

attributes in machine learning. Global QSAR models are constructed to predict the multi-class 

attributes by partitioning the dataset into instances having the same class variable [14]. PubChem 

sketcher, online software is used for drawing the 2D structures of ligand molecules to eliminate the 

distorted side chains and functional groups [15]. The concentration of each of the inhibitors required 

in diminishing the activity of TG2 is calculated based on their pIC50 values obtained from the 

literature. As an extent, to standardize the units, the online measurement tool from Sanjeev’s lab is 

utilized to convert all the pIC50 values in nanomolar (nM) concentration [16]. The dataset is 

prepared for each of the three subcategories of TG2 inhibitors in the same fashion. 

2.2 Generation of molecular descriptors 

Molecular descriptors are generated for the ligand dataset using PaDEL-descriptor software [17]. 

For the ligand dataset, 1D along with 2D molecular descriptors followed by fingerprints is generated. 
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The descriptors are generated based on different molecular characteristics such as Extended 

Topochemical Atoms (ETA), hydrogen bond information, functional groups, constitutional 

indicators, kappa shape indices, among many others. 

2.3 Reduction of molecular descriptors 

Some of the descriptors generate sparse entries for the dataset which are highly interrelated. It is 

essential to eliminate unassigned attributes from dataset to aid towards accurate model development. 

This procedure is often called as the curse of dimensionality in machine learning community [18]. 

As a measure, highly correlated attributes above a threshold of 0.75 are removed from the dataset. 

Further, attributes are reduced by employing principal component analysis (PCA) algorithm which 

minimizes the size of the dataset. Relevant features are selected based on the relative importance of 

each attribute in the dataset [19]. The dependency in R programming language called ‘Boruta’ is 

invoked to identify significant features. It is a wrapper based feature selection implementation which 

explores the importance of original attributes based on permutations [20,21]. 

2.4 Development of mathematical models 

2D-QSAR modeling is performed to predict the interrelation between molecular descriptors and the 

pIC50 value for the ligand dataset. Mathematical models are developed in this study using linear 

regression and penalized techniques. Linear regression model identifies the relationship among the 

multiple independent variables (i.e. molecular descriptors) and the dependent variable (i.e. pIC50) 

by fitting a linear equation equivalent to the data items along with error value. Similarly, penalized 

regression models are applied to minimize the residual sum of squares (RSS) by introducing penalty 

function which maximizes likelihood and minimizes information loss. Three penalized regression 

techniques namely ridge, lasso and elastic net regression is applied to the ligand dataset. The models 

are developed in R programming language by invoking the ‘glmnet’ dependency [22]. 

2.5 Evaluation of models 

The predictive performance of QSAR models is evaluated using ten-fold cross-validation metric. 

The original dataset is partitioned randomly into ten equal samples. Out of ten samples, nine 

subsamples are used for training the model, and one sample is used for the testing purpose. Cross-

validation is re-iterated ten times by repeated resampling. The regression model developed after 

cross-validation is validated using statistical significance and goodness of fit measures defined 

below. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑢𝑚𝑜𝑓𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑅𝑆𝑆) =  ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑛

𝑖=1  (1) 

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟(𝑀𝑆𝐸) =  
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1   (2) 

𝑅 =
∑ 𝑥𝑖𝑦𝑖−

∑ 𝑥𝑖𝑦𝑖
𝑁

√(∑ 𝑥𝑖
2−(

∑ 𝑥𝑖
𝑁

)
2

)(∑ 𝑦𝑖
2−

(∑ 𝑦𝑖)
2

𝑁
)

  (3) 

http://www.rjlbpcs.com/


Parvatikar & Madagi RJLBPCS 2019         www.rjlbpcs.com      Life Science Informatics Publications 

© 2019 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2019 Jan – Feb RJLBPCS 5(1) Page No.630 

 

Here, xi and yi represent the actual and predicted value of pIC50 for the ith ligand and N represents 

the total number of ligands in the dataset. The performance of QSAR models is evaluated on the test 

set to determine the accuracy of prediction [23]. 

3. RESULTS AND DISCUSSION 

3.1 TG2 ligand dataset 

The dataset of TG2 ligands is prepared for each of the three sub-categories of inhibitors namely 

competitive amine inhibitors, reversible inhibitors and irreversible inhibitors. Ten ligands are chosen 

in each category, resulting in 30 known inhibitors of TG2. Biological activities of the ligands are 

determined based on their pIC50 values available in the literature [24,25]. The ligands along with 

their pIC50 values are shown in Table 1. In order to maintain a balance between positive and 

negative groups, 30 ligands are chosen from literature which is known to have no inhibitory effect 

against TG2. The pIC50 values for these compounds were assumed to be zero for model building 

purpose. The dataset comprises both inhibitors and non-inhibitors of TG2. A flowchart depicting the 

steps performed in this study is shown in Figure 1. 

Table 1: The inhibitors of TG2 identified by literature 

Sl. No Inhibitor name Type of TG2 

inhibitor 

pIC50 value 

(nM) 

1. Putrescine  Competitive 

amine 

inhibitors 

4.87 

2. Monodansylcadaverine  5.05 

3. 5-(biotinamido) pentylamine 3.56 

4. 6-diazo-5-oxo-norleucine 6.39 

5. Cystamine 8.53 

6. Dermatan sulphate 5.71 

7. Spermidine 6.32 

8. Fluorescein cadaverine 5.92 

9. Histamine 4.23 

10. Spermine 5.96 

11. GDP Reversible 

inhibitors 

4.49 

12. GTP 5.67 

13. GMP-PCP 4.04 

14. GTPγS 3.89 

15. LDN-27219  6.73 

16. Tyrphostin 47 7.23 

17. ZM39923 4.56 

18. ZM449829 4.97 
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19. CP4d 5.05 

20. Naphthoquinone  6.33 

21. Iodoacetamide Irreversible 

inhibitors 

7.84 

22. 3-halo-4,5-dihydroisoxazole 4.52 

23. NC9 3.67 

24. 4-aminopiperidine 5.09 

25. Doxorubicin 3.76 

26. KCA075 6.05 

27. KCC009 5.66 

28. Cbz-gln(epoxide) 5.03 

29. 3-bromo-4,5-dihydroisoxazole 4.98 

30. Chloroacetamide 4.03 

 

 

Figure 1: Flowchart describing the steps implemented in study 

3.2 Molecular descriptors generation 

The SDF file format is created for every compound using PubChem Sketcher. The.sdf file created 

is given as input to PaDEL-descriptor for generating the molecular descriptors. Based on the 

properties of ligand molecule, 2325 molecular descriptors are obtained. The molecular descriptors 

are consideredas an independent variable for building QSAR models.  

3.3 Selection of relevant descriptors 

It is not feasible to develop QSAR models having a large number of independent attributes. Hence, 

feature selection techniques are applied to the dataset. Initially, features having more than 75% 

correlation are eliminated from the dataset. It is followed by implementing PCA algorithm to reduce 

the high dimensionality of features. The algorithm resulted in 624 features. However, the features 
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obtained after PCA algorithm were still large for generating an accurate representation of data 

instances. Hence, Boruta algorithm available in R programming language is used for feature 

selection which based on wrapper method. The algorithm is iterated in ten folds to yield informative 

features with respect to pIC50 attribute. After the iterations, the algorithm yields seven relevant 

attributes for model development. The molecular descriptors obtained after feature selection is 

shown in Table 2. 

Table 2: Relevant molecular descriptors generated as a function of pIC50 value 

Sl. No Molecular descriptor Meaning 

1. AlogP Ghose-Crippen water-octanol partition coefficient 

2. ATS6m Broto-Moreau autocorrelation of lag 6 coefficient, 

weight by mass 

3. ATS6e Broto-Moreau autocorrelation of lag 6 coefficient, 

weight by Sanderson electronegativity 

4. ATS7e Broto-Moreau autocorrelation of lag 7 coefficient, 

weight by Sanderson electronegativity 

5. GATS6c Geary autocorrelation lag 6 coefficient 

6. SpMax_Dzm Barysz matrix coefficient 

7. Kier1 Kappa shape indices 

3.4 QSAR modeling 

Prior to data modeling, the ligand dataset is divided into training (75%) and test (25%) datasets. The 

model is developed on training dataset, while the predictive performance of the model is assessed 

using the independent test set. QSAR models are generated to find the interrelation between pIC50 

and the seven molecular descriptors. Four different regression techniques are implemented on the 

dataset [26]. 

i. Linear regression 

ii. Ridge regression 

iii. Lasso regression 

iv. Elastic-net regularization 

3.4.1 Linear regression 

Initially, a linear regression model was applied to the dataset to predict the dependency between the 

variables. A linear equation is generated along with error term defined as: 

𝑝𝐼𝐶50 =  −0.0479(𝐴𝑙𝑜𝑔𝑃) − 0.0005(𝐴𝑇𝑆7𝑒) − 0.0014(𝑆𝑝𝑀𝑎𝑥_𝐷𝑧𝑚) + 0.0585(𝐾𝑖𝑒𝑟1) −

0.0767 (4) 

The equation (4) describes pIC50 as a function of molecular descriptors AlogP, ATS7e and 

SpMax_Dzm which are negatively correlated while Kier1 is positively correlated. The equation 
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concludes with a negative error estimate of 0.0767. The accuracy of the model is found to be 78.4% 

with RSS value of 0.632.  

To get better predictive performance, penalized regression methods are applied to the ligand dataset.  

3.4.2 Ridge regression 

This method minimizes the residual sum of squares (RSS) by introducing a penalty parameter λ, 

which initializes the weights to zero by shrinking to low variance. Shrinkage avoids over fitting 

ensuring that the estimator provides no solution, as seen in the case of multi collinearity [27]. Ridge 

regression aims to minimize the penalty factor‖𝛽‖2
2 by shrinking λ upto zero.  

𝑚𝑖𝑛𝛽𝜖ℛΡ‖𝑦 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖2

2
(5) 

Ridge regression is applied in bioinformatics applications when a number of attributes (p) is greater 

than the data instances (n) (i.e. p>n). The generalized ridge regression model is denoted as: 

Y= XB+e(6) 

Here, Y denotes independent variable; X denotes independent variables, B is the regression 

coefficient, and e is the error estimate. The dependency in R programming language, ‘glmnet’ is 

invoked to perform ridge regression by defining α=0 (Jerome et al., 2010). The glmnet function for 

ridge regression model represented as: 

𝑝𝐼𝐶50 =  −6.9236(𝐴𝑙𝑜𝑔𝑃) + 2.3273(𝐴𝑇𝑆6𝑚) + 2.2651(𝐴𝑇𝑆6𝑒) + 2.4839(𝐴𝑇𝑆7𝑒) +

2.7070(𝐺𝐴𝑇𝑆6𝑒) + 8.2010(𝑆𝑝𝑀𝑎𝑥𝐷𝑧𝑚) + 1.3116(𝐾𝑖𝑒𝑟1) − 8.0316(7) 

The ridge model obtained after cross-validation, describes pIC50 value as a function of all the seven 

molecular descriptors associated with the error estimate, while none of the variables is reduced to 

zero. The plot describing coefficients of ridge regression versus penalty function log lambda (λ) is 

shown in Figure 2(a). As observed in the plot, when λ approaches zero, ridge model behaves 

similarly to ordinary least squares model. While λ value increases, ridge model approaches to zero. 

The mean square error is found to be 2.4014 for the ridge regression model. The plot representing 

mean square error as a function of log lambda is shown in Figure 3(a). 

3.4.3 LASSO regression 

Abbreviated as Least Absolute Shrinkage and Selection Operator, it is penalized regression model 

which introduces shrinkage procedure for reducing the data instances towards a central measure. 

The algorithm performs L1 regularization, which defines a penalty function that equates the absolute 

value of the coefficients to zero [28]. This method is suitable for data with high multi collinearity, 

larger the penalty value; greater is the shrinkage towards zero. The generalized equation of LASSO 

is defined as: 

𝑚𝑖𝑛𝛽𝜖ℛΡ‖𝑦 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖1 

Here, ‖𝛽‖1  is a penalty function that shrinks the penalty parameter λ to zero. Based on the 

parameters in the dataset, lasso model is developed using the 'glmnet' dependency in R programming 

language [29]. The model is described as: 
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𝑝𝐼𝐶50 = −0.1367(𝐴𝑙𝑜𝑔𝑃) + 0.0010(𝐴𝑇𝑆7𝑒) + 0.6073(𝐺𝐴𝑇𝑆6𝑐) + 0.004(𝐾𝑖𝑒𝑟1) − 1.096 (9) 

Lasso model defines pIC50 value as a function of three molecular descriptors namely AlogP, 

GATS6c and Kier1 associated with the error estimate. As observed, the model eliminates other 

descriptors which are highly correlated. The coefficients derived in the lasso equation are shown in 

the plot obtained by equating α=1 in the glmnet fit function as shown in Figure 2(b)A plot 

representing the mean square error observed in lasso regression model as a function of log lambda 

is shown in Figure 3(b). The plot is obtained after ten-fold cross-validation represents the range of 

mean square error obtained for different models. The best performing model results in terms of the 

mean square value of 3.4075. 

3.4.4 Elastic Net regularization 

It is a hybrid technique based on ridge and lasso regression methods [30]. The model is trained based 

on L1 and L2 regularization exhibiting a grouping effect using the 'glmnet' dependency in R 

programming language. The value of α is chosen to be intermediate to that of ridge (α=0) and lasso 

(α=1), which is 0.5. The generalized equation of elastic net is defined as: 

𝛽^ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝑦 − 𝑋𝛽‖2 + 𝜆2‖𝛽‖2  + 𝜆1‖𝛽‖1 (10) 

Based on the parameters of the ligand dataset, the elastic net model is obtained given as: 

𝑝𝐼𝐶50 =  −1.0005(𝐴𝑙𝑜𝑔𝑃) + 2.7188(𝐴𝑇𝑆6𝑚) + 1.2507(𝐴𝑇𝑆6𝑒) + 4.3033(𝐴𝑇𝑆7𝑒) +

4.2718(𝐺𝐴𝑇𝑆6𝑐) + 2.1118(𝐾𝑖𝑒𝑟1) − 9.6997 (11) 

The coefficients of the elastic net model are plotted as a function of log lambda as shown in Figure 

2(c). After cross-validation on the test set the model is being evaluated for mean square error which 

is found to be 0.36656. The plot referring to mean square error plotted against log lambda is shown 

in Figure 3(c). 

 

Figure 2: The figure representing plots of coefficients of QSAR models as a function of penalty 

function log lambda; 2(a) represents ridge regression coefficients; 2(b) represents lasso regression 

coefficients and 2(c) represents elastic net coefficients respectively. 
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Figure 3: Mean square error plotted as a function of log lambda. Two lines seen in each figure 

indicates the range of mean square error value. Numbers seen on the right side of the figures 

represents the molecular descriptor attribute. 3(a) represents mean square error for ridge regression 

while 3(b) and 3(c) represent MSE’s for lasso regression and elastic net regression respectively. 

3.5 Evaluation of model performance 

Based on the QSAR equations derived from the regression methods, the predicted pIC50 values 

were calculated for each model. The error is measured as a function of the difference in values of 

actual pIC50 compared to the predicted ones for each regression model. It is found that linear 

regression performs poorly for the dataset, while elastic net model outperforms other models. The 

detailed summary of evaluation metrics is shown in Table 3. 

Table 3: Evaluation metrics for regression models 

Sl. No QSAR model Residual sum 

of squares 

Mean square 

error 

R value 

1. Linear regression 0.632 - 0.58 

2. Ridge regression - 2.4014 0.79 

3. Lasso regression - 3.4075 0.68 

4. Elastic net 

regularization 

- 0.36656 0.88 

The values in the table indicate elastic net model performs better in the prediction of pIC50 metric, 

resulting in the least mean square error of 0.36656. The predictive performance of all the regression 

models is shown in the plot depicted as Figure 4. The plot 4(d) shows minimal distortion with 
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original values as compared to other models. Hence, elastic net model outperforms having a better 

predictive performance for TG2 ligand dataset. 

 

Figure 4: Analysis of predictive performance of regression models. Here X-axis represents the 

actual pIC50 values and Y-axis represents the predicted pIC50 values from each model. 4(a) 

represents linear regression; 4(b) represents ridge regression; 4(c) represents lasso regression and 

4(d) represents elastic net regression plot respectively. 

4. CONCLUSION 

The present study will help to identify the set of potent ligand molecules in inhibiting the expression 

of TG2 and also it can be used as a new strategy to control over the lung carcinoma.The focuses on 

an approach to predict novel drug molecules based on the outcome of mathematical models. By 

implementing this methodology, encouraging insights are obtained for predicting the biological 

activity of drug molecules against TG2. These models will aid in filtering out the drug-like 

molecules and development of better anti-tumor drugs against transglutaminase 2 (TG2). 
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