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normally it is used as free radical interceptor; because of which it converts into a species acting as 

an efficient one electron oxidant mainly for the octahedral complexes in comparative study.   
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1. INTRODUCTION 

Chemical kinetics is a branch of chemistry which studies the rate of reaction whereby various 

chemical reactions take place in different conditions. Kinetics takes into consideration the time 

required for transformation of reactants from one state to another. Some reactions take place 

rapidly within fraction of seconds while some are extremely slow like rusting of iron. Reactions 

which take reasonable time for completion can be studied conveniently by suitable methods. 

Kinetics is concerned with series of all physical and chemical processes which comes during the 

course of chemical reactions [1-3]. Several researchers [4-6] had made pioneering work in 

chemical kinetics like Ludwig Ferdinand Wilhelmy, W. Ostwald, Wenzel C F, L. J. Thenard, 

Berthelot, Peter Waage and Harcourt, etc. Kinetic study covers the effect of concentration, 

temperature and pressure on different types of reactions. Based on the type of reaction wide 
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variety of experimental techniques had been used to investigate. Kinetics is useful in study of gas, 

liquid and solid phase reactions. Especially liquid phase reactions are studied the most due to 

higher interest of organic and inorganic chemists particularly engineers from industries [7-9]. 

Various factors such as concentration, catalyst, dielectric constant [10-15], salt [16-19], ionic 

strength, temperature [20] and free radicals [21, 22] were accounted by different researchers. 

Potassium hexacyanoferrate (III) was used for reading palimpsests and old manuscripts in 

nineteenth century. The compound has widespread use in blueprint drawing and in photography 

(Cyanotype process). Iron and copper toning involve the use of potassium ferricyanide. Potassium 

ferricyanide is used as an oxidizing agent to remove silver from negatives and positives, a process 

called dot etching. In color photography, potassium ferricyanide is used to reduce the size of color 

dots without reducing their number, as a kind of manual color correction. The compound is also 

used to harden iron and steel, in electroplating, dyeing wool, as a laboratory reagent and as a mild 

oxidizing agent in organic chemistry. It is also used in black and white photography with sodium 

thiosulfate (hypo) to reduce the density of a negative or gelatin silver print where the mixture is 

known as Farmer's reducer; this can help offset problems from over exposure of the negative or 

brighten the highlights in the print.  Potassium ferricyanide is also one of two compounds present 

in ferroxyl indicator solution (along with phenolphthalein) which turns blue (Prussian blue) in the 

presence of Fe2+ ions and which can therefore be used to detect metal oxidation that will lead to 

rust. It is possible to calculate the number of moles of Fe2+ ions by using a colorimeter because of 

the very intense Prussian blue color of Fe4[Fe(CN)6]3. Potassium ferricyanide is often used in 

physiology experiments as a means of increasing a solution's redox potential (E°' ~ 436 mV at pH 

7). As such it can oxidize reduced cytochrome C (E°' ~ 247 mV at pH 7) in intact isolated 

mitochondria. Sodium dithionite is usually used as a reducing chemical in such experiments (E°' ~ 

−420 mV at pH 7). Potassium ferricyanide is used in many amperometric biosensors as an electron 

transfer agent replacing an enzyme's natural electron transfer agent such as oxygen with the 

enzyme glucose oxidase. It is used as ingredient in many commercially available blood glucose 

meters for diabetics use. Potassium ferricyanide is combined with potassium hydroxide (or sodium 

hydroxide as a substitute) and water to formulate Murakami's etchant. This etchant is used by 

metallographers to provide contrast between binder and carbide phases in cemented carbides. The 

aim of present review article is to understand the kinetics of oxidation of various organic 

compounds by hexacyanoferrate (III). 

Methods of kinetic study 

Various methods are used to study chemical kinetics based on half life period or time period of 

completion of reactions. Extremely fast reactions can be studied by using stopped flow, molecular 

beam flow, etc techniques whereas other can be examined by conductometry, pH-metry and 

colorimetric titrations, etc. Different kinetic methods are as tabulated below.  
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Method Time scale Illustration 

Conventional ≥ 10 s 
The reactants are mixed together in a batch reactor 

and Conc. Vs time is measured 

Stopped flow ≥ 10-1 s 

Set of continuously flow system in which reactants 

are fed into the reactor  and flow out again so 

quickly that there is negligible reaction followed 

by stopping the flow for reactant to react. Finally, 

conversion Vs time calculated 

Conventional flow 

system 
≥ 10-3 s 

Continuously reactants are feed  into a reactor and 

the steady state reaction rate was measured 

Pressure Jump and 

Temperature Jump 

 

≥ 10-6 s 

The reactants are mixed at such a low temperature 

that the reaction rate is negligible. CO2 lasers used 

suddenly to heat the reaction, conc. Vs time 

measured then the reactant conc. Vs time 

measured. Eigen got Nobel prize for this 

technique. 

NMR 

 
10-2-10-9 s 

Initiate a change with magnetic pulse and measure 

the decay of spins by NMR. 

Flash photolysis 

 
10-9-10-10 s 

Reactants are placed into a vessel under conditions 

where reaction is negligible. Pulse a laser flash 

lamp to start reaction. The reactant conc. Vs time 

was measured. Porter got Nobel prize for this 

technique. 

Molecular Beam 

 
10-9-10-13 s 

Direct Beams of reactants towards each together in 

a vacuum system and the steady state reaction rate 

was measured. Hersch Feld got Nobel prize for 

this technique to. 

Femto spectroscopy 

 
10-15 s 

Life time reaction can be studied. Ahmed Zewel 

got Nobel prize for this technique. 

Various Oxidizing Agents 

The species which oxidizes other species, give up oxygen or electronegative atom, which accepts 

hydrogen or any other electropositive element, which gain electron named as oxidizing agent. 

Numerous compounds functions as oxidizing agents in chemistry. Oxidations of various organic 

compounds by hexacyanoferrate (III) were considered in our study but it is essential to have a look 

into the other oxidizing agents also. The N-halo compounds are widely used as oxidizing agents 
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for oxidations of various organic compounds like N-chloronicotinamide [23] where molecular 

chlorine is generated within the reaction acts as oxidizing agent. Other N-halo compounds are N-

Bromophthalimide, N-Bromoacetamide and N-Chorobenzamide. Ethyl N-Chlorocarbamate (ECC) 

[24] works as efficient oxidant for α-amino acid. N-haloamine furnishes halonium ion and a hypo 

species which works as nucleophile as well as base. Positive halogen containing compounds works 

as mild oxidants. N-Bromosuccinamide oxidizes L-arginine in acidic medium to corresponding 

aldehyde. Survey of literature reveals that N-Bromosuccinamide oxidizes various organic 

compounds [25-31]. Diperiodatonickelate (IV) in basic medium oxidizes L-arginine to aldehyde 

[32]. Quinolinium dichromate (QDC) acts as selective oxidant for oxidising primary alcohol in 

presence of secondary alcohol. Quinolinium dichromate works as an efficient oxidant for both 

organic and inorganic compounds [33]. Other similar oxidants are pyridinium chlorochromate, 

zinc chlorochromate, magnesium chlorochromate and potassium dichromate [34]. A mild and 

selective oxidant tetraethyl ammonium chlorochromate oxidizes primary aliphatic alcohol [35]. 

Fremy’s radical i.e. potassium nitrosodisulphonate oxidizes α-amino acid to corresponding α-keto 

acid. Pyridinium hydrobromide perbromide oxidizes α-amino acid to corresponding aldehyde in 

aqueous acetic acid. Chloramine-T i.e. 4-chloro-4-methyl benzenesulfonamide oxidizes various 

organic compounds [36-41]. It yields a hypochlorite and act as a source of electrophilic chlorine in 

organic synthesis. Various other important oxidising agents are octacyanomolybdate, periodate ion 

[42], hexamethylene diammine tetraacetatocobaltate (II) complex, t-butyl hydroperoxide, 

potassium dichromate [43], persulphate, hydrogen peroxide, N-chlorosaccharin, pyridinium 

chlorochromate, tris(benzhydro oxalate) iron (III)], benzimidazoliumfluorochromate [44], 

diperiodatoargentate (III) [45], Imidazolium dichromate [46], methylene blue [47], 

diperiodatocuprate (II), tetrakis (pyridine) silver dichromate, benzyl dimethyl ammonium 

chlorobromate, morpholinium chlorochromate, trichloroisocyanuric acid [48], cetyl trimethyl 

ammonium dichromate [49]. A well known strong oxidant potassium permanganate acts as an 

oxidant in acidic, basic and in neutral medium. Literature reveals oxidation of various compounds 

by potassium permanganate [50-62]. The most significant characteristic of an oxidation-reduction 

process is the charge transfer between the reactants. The electron transfer means that changes must 

take place at the atomic level in the orbital populations of the two species, thus influencing the 

other bonds in which the individual atoms are involved [63]. This work move toward mixed redox 

reactions, taking as reducing agents several organic substrates and as oxidizing agent as complexes 

of different transitional metals ion in their highest oxidation state. 

The electron transfer mechanism: Outer-sphere and inner-sphere mechanism 

Henry Taube [64] (Nobel Prize 1983) on the basis of electron transfer reaction and structural 

changes involving in it classified redox processes into two types as outer-sphere and inner-sphere. 

Outer-sphere mechanisms have a direct transfer of electron between reducing and oxidizing agent 
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with minimum of interaction. The coordination spheres do not undergo any modifications to their 

compositions, only a little change of ligand-metal ion distances and solvation interaction occurs. 

The electron moves by tunneling and follows the Franck-Condon restriction. The electron moves 

faster (10-15 s), while nuclei remains stationary in their definite positions, the time of their 

movement being significantly longer (10-13 s). Taking into consideration the outer-sphere 

mechanism and self-exchange reactions (without chemical transformation) R.A. Marcus (Nobel 

Prize 1992) set up and developed a theoretical model to determine rate constants for the electron-

transfer [65], [66]. Many inorganic reactions obeyed this model [67-69]. The extension of this to 

organic reactions led to additional explanation of the theory by several other authors [70-73]. 

Inner-sphere mechanisms, on the converse require a close interaction between the coordination 

spheres of the reactants by joining them together in a complex having at least one ligand in 

common. This would lead to the electron-transfer in a substitution process. The electron is shifted 

through this ligand functioning as a bridge. These mechanisms include three steps: a) formation of 

the complex with a common ligand as a bridge, b) transfer of electron c) breaking up of the 

complex into the reaction products [74]. While, in principle, any of these steps might manage the 

rate, in majority of conditions the electron transfer takes place in the rate-determining step [63], 

[75], [76]. Movement of the common ligand from the oxidizing species to the oxidized form of the 

reducing agent is a concrete argument for the inner-sphere mechanism [77]. An alteration of the 

rate by changing the ligand having the role of bridge is an additional support of such a mechanism. 

On the converse, the lack of such influence argues for an outer-sphere mechanism. Usually, 

systems which are inert to substitution will react by an outer-sphere mechanism. For systems 

labile to substitution and with a redox rate equivalent to the substitution rate indicates an inner-

sphere interaction. The activation parameters give additional information of the way by which the 

electron transfer takes place. A lower value of activation enthalpy suggests an outer-sphere 

mechanism. 

Proof of the involvement of an intermediate 

When the rate law suggests the participation of an intermediate, the main direct support is 

established by measurement of its physico-chemical properties. This approach needs the existence 

of an experimental technique for its recognition. Frequently, it is essential that the intermediate is 

formed in fairly high concentration (equivalent to the reactants in the case of a rapid pre-

equilibrium). Based on the life-time of the intermediate, the detection can use classical techniques 

or some arrangements intended for rapid reactions.  

Proof for rejection of intermediate existence 

When there is large difference between electronic spectra (UV-VIS) of reactants and products, the 

consecutive recordings of spectra throughout the reaction can convey information on the 

involvement of intermediate. The existence of isobestic points is a proof of a linear correlation 
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[78] of the concentrations of the species, suggesting that the reactant is converted directly into the 

product without any intermediate. If this is not observed or appears only within a short period at 

the start of the reaction and the intersection position is changed, it suggests some intermediate of 

significant concentration is formed. 

Catalysis in redox reactions 

Catalysis using another redox couple phenomenon occurs when a redox couple mediates uni-

equivalent or bi- equivalent electron transfer. An example is the oxidation of Cr (III) to Cr (VI) by 

S2O8
2−, which is catalyzed by Ag (I). The latter is able to form Ag (III) with the bi-equivalent 

peroxydisulfate. This then forms Ag (II) in a reaction with Ag (I). Ag (II) will react uni-

equivalently with Cr (III), or another intermediate species of Cr to finally form Cr (VI). Many 

oxidations of organic compounds are catalyzed by redox couples Such as OsO4 catalysis via the 

formation of double bridged intermediates [79-81] or Ce (IV) catalysis via Ce (III) intermediates. 

A review of the literature illustrates oxidation of many organic and inorganic compounds by 

potassium hexacyanoferrate (III). Oxidation of methyl cellulose polysaccharide a natural polymer 

by alkaline potassium ferricyanide was carried by R.M. Hassan et al [82]. Interaction of L-phenyl 

alanine with potassium hexacyanoferrate (III) catalyzed by Irridium (III) in aqueous alkaline 

medium have been studied by Goel and Sharma [83]. 

Characteristics of K3[Fe(CN)6] and oxidation states of Iron 

Molecular formula-C6N6FeK3, Molar mass- 329.24 g/mol, Appearance-deep red crystals, Density 

1.89 g/cm3, Melting point 300°C, Solubility- slightly soluble in alcohol, soluble in acid,  soluble in 

water 464 g/L (20°C) , Crystal structure- monoclinic,  Coordination geometry- octahedral at Fe, 

Flash point-Non-flammable. Iron shows various oxidation states +6, +5, +4, +3, +2, +1, 0, -1, and 

-2, but out of these oxidation states +2 and +3 states are stable states. Potassium hexacyanoferrate 

(III), K3[Fe(CN)6] is basically a substitution-inert transition metal complex [84]. It does not 

substitute its ligands at a rate fast enough to compete with rapid electron transfer. As a result, 

oxidations by hexacyanoferrate (III) ion takes place by way of a non-bonded electron transfer or 

outer sphere process, in which an electron is transferred from substrate to the metal ion through 

the cyano ligand. In acidic medium, potassium hexacyanoferrate (III) has been employed for the 

oxidation of sulphur containing compounds [85-89] and also for oxidation of toluene and 

substituted toluenes [90-92], diphenylmethane and triphenyl methane [93], unsaturated systems 

[94] and polynuclear systems [95]. In neutral medium, potassium hexacyanoferrate (III) has been 

utilized for the oxidation of aliphatic amines [96]. In basic medium, potassium hexacyanoferrate 

(III) has been widely used for the oxidation of various types of organic compounds like  aldehydes 

[97-101], amines [102-108], alcohols and diols [109-115], sulphur compounds [116-122], acids 

[123-127],  sugars [128,129], hydrazines,  amino acids [130] [131], acyloins, As(III) [132,133], 

hypophosphite [134], hydrocarbons [135] and phenols [136,137]. 
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Ferri- and ferro-cyanic complexes 

From many oxidation states possible for iron, only the very usual +2 and +3 states form 

hexacyanoferric complexes, extremely stable species, inert to ligand substitution. The 

hexacyanoferrate (III) ion [FeIII(CN)6]
3- also known as ferricyanide is the completely de-

protonated anion of ferricyanic acid H3[Fe(CN)6], a strong acid in all its dissociation steps [138]. 

H3Fe(CN)6 H2[Fe(CN)6]-   +  H+ K1 =1.78 x106M            (a)

H2[Fe(CN)6]- H[Fe(CN)6]2-   +  H+ K2 =1.70 x103M            (b)

H[Fe(CN)6]2- [Fe(CN)6]3-   +  H+ K3 =3.98 M                   (c)
 

 

Thus, on a large pH range, completely dissociated form is the only one present in solution. 

Similarly, hexacyanoferrate (II) ion [FeII(CN)6]
4- also known as ferrocyanide, is the completely de-

protonated form of the ferrocyanic acid (H4Fe(CN)6), which is also strong in its first and second 

dissociation steps, but weaker in its last two [139]. 

H4Fe(CN)6 H3[Fe(CN)6]-   +  H+ K1 =3.47 x102M          (e)

H3[Fe(CN)6]- H2[Fe(CN)6]2-   +  H+ K2 =1.20 M                  (f)

H2[Fe(CN)6]2- H[Fe(CN)6]3-   +  H+ K3 =2.24 x 10-3 M       (g)

H[Fe(CN)6]3-
[Fe(CN)6]4-   +  H+ K4 =6.46 x10-5 M        (h)

 
 

Therefore, [Fe(CN)6]
4- is protonated easier than [Fe(CN)6]

3- in the media of the same acidity. 

2. CONCLUSION 

Oxidations with hexacyanoferrate (III) 

Hexacyanoferrate (III) i.e. [Fe(CN)6]
3- acts as a competent oxidant [140] for diverse organic 

substrates due to the fact that the electron transfer in the hexacyanoferrate complexes takes place 

between the metallic centers, the redox couple [Fe(CN)6]
3-/[Fe(CN)6]

4- is a monoelectronic 

system. It is also very stable, due to the fact that both complex ions are inert to ligand substitution, 

which means that almost without exception the oxidations with hexacyanoferrate (III) proceed by 

outer-sphere mechanisms [141]. A rate constant of 5.54x104 M-1s-1 has been determined for the 

electron transfer. 

 

[Fe(CN)6]3-   + e- [Fe(CN)6]4-                                          (i)
 

 

On the other hand, since H+ ions are not involved in the redox equation, the standard potential of 

the couple is independent on acidity [142] over a large pH range (4-13). Its relatively small value 

(0.41 V for [K+] = 0.1 M), makes hexacyanoferrate a weak oxidant. It acts, therefore, as selective 

oxidizing agent, only appropriate for substrates which are highly susceptible to oxidation. Also, for 
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substrates with more possible oxidation steps, it will be a mild oxidant, generally leading to the 

first such step. The key step in any of its redox processes is an electron transfer. For this to take 

place, an ion pair, oxidant-substrate intermediate should be formed in a rapid pre-equilibrium. The 

electron transfer and rate determining step takes place inside the outer-sphere type of precursor. 

The presence of cationic species in solution, particularly alkali-metal ions plays crucial role in 

kinetic reactions in acidic media, since the high negative charge on [Fe(CN)6]
3- favors the 

formation of ion-pair. Larger cations increase the reaction rate due to formation of cation bridge of 

[Fe(CN)6]
3-. The use of suitable hexacyanoferrate salt generally existing K3Fe(CN)6 is advisable. 

The electronically favourable CN- ligand reduces the barrier for an electronic flow from highest 

occupied molecular orbital of substrate to the lowest unoccupied molecular orbital of metal 

complex. The reactions order for both the oxidant and the reducing agent are usually one. The 

oxidations using hexacyanoferrate (III) are expected to be quite simple and free from any 

secondary processes due to their outer-sphere mechanisms, thus recommending it as an oxidant. 

One limitation is the sensitivity to catalysis by trace ionic impurities, especially copper, brought in 

with the chemicals. This aspect needs to be either quantified, eliminated or at least minimized by 

using highly pure chemicals and if possible also from the same batch. To monitor all oxidations 

absorption band at 420nm using spectrophotometry or stopped flow techniques is appropriate. 

With [substrate] reactions are first order as it is always in rate determining step but the basic 

substrate is more reactive than neutral or protonated species due to transfer of an electron from an 

electron rich species to substrate. Hexacyanoferrate oxidizes variety of compounds having diverse 

functionalities like phenols, alcohols, aldehydes, ketones, acyloins, sugars, enediols, α-hydroxy 

acids, α-ketoacids, α,β-unsaturated acids, amines, hydrazines, heterocyclic cations, 

hydroxylamines, hydroxamic acids, aminoacids, thiols, thioamides, arylalkanes, aromatic 

hydrocarbons, olefins, metalloproteins, radicals and chelating agents. Hexacyanoferrate(III) can be 

used as oxidant for oxidation of those organic substrates which are susceptible to withdrawal of 

one electron from electron rich site similar to other available oxidants having specificity and 

selectivity in action such as SeO2, Pb(OAc)4, OsO4, t-butyl chromate, CrO3-pyridine complex, 

peroxiacids, periodic acid, peroxitrifluoroacetic acid. These oxidants are versatile and selective for 

the introduction or attack by functional groups either on simple or complex molecules. It is 

important to note that hexacyanoferrate (III) fails to oxidise many organic substrates because of its 

outer-sphere tendency of application for easily oxidisable substrates and thus making it as 

selective and useful oxidant.  
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