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ABSTRACT: Theoretical and experimental observations in metabolic engineering both indicate 

that metabolism operates at the level of networks. In plants, metabolic complexity attains a high 

degree because of compartmentation and the synthesis of a very wide variety of secondary 

metabolites. Metabolic flux analysis (MFA) gives tools to measure and model the operation of 

metabolism and is making important contributions to understand the metabolic complexity. This 

review gives an overview of different MFA approaches, the experimental measurements needed to 

apply them to get the flux information across the metabolic network. 
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1.INTRODUCTION 

The metabolic networks of plants are extensively complicated over different organisms. Because of 

its diverse interlinked form of plant life, like being immobile, autotroph and poikilothermic and 

devouring huge biochemical collections and an extensive level for subcellular segmentations. Thus, 

the low success rate of the outcome of, particularly the primary metabolism of metabolic 

engineering is not shocking, as individual gene changes generally cause a minute change in the 

aspired traits. Likewise, the correlation among the phenotype and genotype is also integrally 

complex since the working of distinct proteins relies on the active state of the complex metabolic 

network [1,2]. Metabolic flux analysis (MFA) provides such equipment’s which has a purpose to 
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distinguish fluxes via the network and shed light into their handling [3]. Through metabolism, MFA 

measures the flux of constituents via metabolism, flux maps yielding which can assist in elucidating 

the phenotypes in details. From the previous studies it was revealed that, understanding towards 

metabolism has improved through MFA, which depicts the routes of fluxes via metabolic network 

[4,5], besides that it reveals novel paths and cycles [6,7]. We can make a hypothesis about metabolic 

mechanism with the help of flux maps achieved under different circumstances of growth as well as 

from mutants [8,9,10,11]. For microbial systems: describing the structure and stoichiometry of the 

network is the prime requirement in MFA, this key step can be achieved from the fully annotated 

genome along with the datasets of metabolite, transcript, and proteins. The network assembly can 

be used to describe the probable range of flux maps that a network is able to maintain and to define 

the finest specific cellular targets like (evolutionary selection pressures), just as exploiting 

production [12,13,14,15]. The contrast between the results of fluxes expected from analytically 

established MFA and those measured from finest meet evolutionary impetus may be a valued device 

to assess the validity of the proposed impetus. Fluxes between cells and tissues are measured through 

experimentally based approaches which are established on either steady-state or kinetic isotopic 

classified tests and their analysis by computer-assisted/based modeling. Those MFA approaches of 

interest have given due importance which has evaluations and models of multiple fluxes via a 

metabolic network or generally, a sub-network, and comprise systems in the steady state along with 

that one whose flux may be varying. MFA approaches might be separated into numerous groups that 

vary in the vital data information, the types of models and the variety of information gained. 

Different approaches of MFA were proposed through the state of the biological systems, whether it 

assessed in steady state or sub-network state. Flux analysis is started with sets of network reactions 

depiction, which stoichiometrically reveal the substrates of respective reactions to its results. 

Several means are given through the network, the stoichiometric depiction is signified the full range 

of possible metabolic natures, Extreme pathway analysis (EPA) [16] and elementary mode analysis 

(EMA) [17,18,19] are essential approaches, which are used to examine this range and outline the 

bounds of the possible steady-state flux allocations. Although steady-state MFA does not operate a 

prognostic model, it is pleasing as it produces flux maps without involving a measure of metabolite 

pool sizes, or the approximation of kinetic limits, that are needed for dynamic MFA, but generally 

hard to get. There is no need of constant flux in case of unsteady-state or dynamic/kinetic method, 

so in this case, we can change the pool size and flux are recognized from time course analysis of 

pool sizes and classification. The use of single flux estimations of dynamic classification and for 

pathway revelation is well flourished in plants biochemistry and made massive contributions. 

Numerous autonomous limitations are used in the dynamic MFA because distinct enzymatic and 

transports stages are modeled, each containing several concentrations and rate constant values. 

Labeling experimental steady-state (13C-MFA) systems should be in a metabolic steady-state 
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sufficiently so that it reaches isotopic steady state. But several plants tissues don’t sight steady-state 

metabolism or can’t be considered to the isotopic steady state under physiologically significant 

circumstances. So, in this situation, dynamic MFA is required to measured multiple fluxes through 

networks, and these types of methods have the additional benefit of passive models this can be used 

to guess the consequence of genetic or other fluctuations on pool sizes and metabolic fluxes [20,21]. 

Metabolic control analysis (MCA) is needed for identification and inspects pathways monitoring 

points, so dynamic MFA is also essential for the same case [1, 22]. Diverse enzymes are assigned 

quantitatively to control the flux along the pathways in MCA [23,24,25]. In Top-Down Control 

Analysis, it is a powerful projecting guide for metabolic engineering, which acknowledges the 

enzymes that preserve utmost govern over fluxes [26], blocks in which enzymatic reactions are 

grouped, information on control of flux between blocks are yielded from MCA analysis, however 

not within these blocks. Modern latest tools like mass spectroscopic and nuclear magnetic resonance 

(NMR) made successes in MFA approaches recently, positionally categorized range of substrates 

with stable isotopes, and key advancement of modeling concept and computational approaches. 

Comprehensive explanations regarding the performance of various MFA analyses are stated in the 

literature; broad outline [27] are, FBA [28, 29], EMA [17, 18, 29], EPA [16], dynamic and steady-

state MFA [30,31,32,33,34,35] and MCA [36, 37]. 

Systems Biology  

Current genome sequence technology generates thousands of genome sequences which allow us to 

resolve the biological mechanism and its constituents related to the cell those create organism cells. 

Systems biology inspects the interaction between different components (proteins, metabolites, genes 

and regulatory elements) of the network and also finds out that how these components change the 

phenotype of the cell [38, 39]. Systems biology emphasizes compiling of large data sets and checks 

their regularity [40]. The application of systems biology in plants leads to “In silico plant” concept 

[41]. Previous studies revealed that available upgrading in the systems biology made it more 

convincing towards accession for not only model plants but other major vital plants like Oryza sativa 

[42]. Previous studies reviewed the recent successes in the field of systems biology which contain, 

exploration of abiotic stress responses [43], the interaction between host and pathogen [44, 45], 

analysis of nitrogen nourishment [46], and review of common metabolism [47]. The metabolic 

model can estimate the flux yield based on the inserted data and the type of model, different paths 

expected by which fluxes can transfer, and possible unique paths [48].  

Genome-scale metabolic models (GEMs)  

Genome-scale metabolic models consist of every identified metabolic reaction, which arises within 

an organism, cells, tissues or tissue-compartment. The model comprises three vital aspects: the 

network reaction, gene-protein-reaction (GPR) interactions and the reaction of biomass. Foremost, 

the model consists of all internal reactions and metabolite carriers, that comprising the intake and 
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transfer of metabolites and their related metabolic charge. A stoichiometric matrix, also known as a 

coefficient matrix that symbolizes the stoichiometric coefficient of every metabolite within every 

metabolic reaction. Besides that, a substitute biomass creation reaction is added that represents the 

accretion of all biomass constituents. Lastly, gene-protein-reaction (GPR) relationships are 

established to relate the genes that are connected with a metabolic reaction. Boolean Logic gates are 

used to develop GPR relationships, where a gene (a subunit of a protein) is represented as “and” 

relationship and an isozyme is represented as “or” relationship [49]. Genome-scale metabolic 

models (GEMs) constructions are increased to meet with the pace of current genome sequence 

annotation technology which produces thousands of sequenced genomes [50]. An ideal genome-

scale metabolic model interconnects the biological components like gene, protein, and enzymes for 

every metabolic reaction [51]. GEMs wrap up the recognized metabolic knowledge of organisms in 

a mathematically characterized reaction network. The core target of the GEMs is to improve the 

yields of bioproducts via giving genetic intermediate approaches regarding genes up and down 

regulations and gene knockouts [52]. A metabolic network should be constructed before the 

implementation of FBA so it can provide the stoichiometric matrix [53]. Numerous metabolic 

networks are established from current databases of administered genomic data and biochemical 

database, like as, The Kyoto Encyclopedia of Genes and Genomes (KEGG) database [54], 

BRENDA [55], Gene Ontology (GO) [56], MetaCyc [57] and as well as genome databases [58], 

biochemical databases [59,60,61], organism-defined databases [62], protein localization databases 

[63], reconstruction packages [64], simulation environments [65,66,67,68], and packages for 

visualization [69]. A finite number of packages and software tools are accessible freely and paid, 

which purpose is helping the modeling reconstruction development (Table 1). A decade ago, 

genome-scale metabolic reconstruction for microorganism had successfully constructed, which 

created exclusive visions into the metabolomics mechanism [74,75]. Genome-scale metabolic 

models of prokaryotes have been analyzed with metabolic engineered based optimization and 

algorithms tools. Tools like OptKnock, OptORF, and OptFlux are very popular, which are widely 

used to simulate the synchronous (knockout) or down or up-regulation of numerous genes [50], [76]. 

In the past due to lack of genomic information and metabolic pathways complexity, application of 

genome-scale modeling was not well flourished in plants in spite of this first genome-scale modeling 

for A. thaliana was developed [77,78,79]. Later, the metabolic models were also constructed for 

other plants like Arabidopsis and rice [77,78,80,81,82] and many other plants species given in the 

Table (2).  
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Table 1: Generally used databases for metabolic models reconstruction 

Usable Sites References Remarks 

KEGG pathways [59] Biochemical databases 

KEGG rice pathways  Genome research database for rice 

IUBMB Enzyme nomenclature  Universal information on enzyme nomenclature 

Brenda Enzyme database [55] Comprehensive enzyme repositories 

BioCyc [57] Pathway/Genome Databases (PGDBs) 

BiGG Models [70] Knowledgebase of GEMs 

MetaCyc [57] Metabolic pathway database 

TheSeed [71] Comparative genomic analysis tool 

Entrez Gene [72] Gene-specific information database NCBI 

The Genomes Online Database (GOLD) [73] Information hub for genome and metagenome 

COBRA Toolbox [102] MATLAB needed 

 Table 2: Major plants metabolic pathways databases 

 

Pathway Database Species Pathways Genes Enzymatic 

Reactions 

Enzymes Compounds Reference 

RiceCyc ver 3.3 Oryza sativa (Japonica) 308 47886 2103 6040 1543 [83] 

SorghumCyc ver 6.0 Sorghum bicolor 478 5986 2948 5988 2222 [83] 

MaizeCyc ver 2.2 Zea mays 424 39655 2132 8887 1453 [83] 

BrachyCyc ver 2.0 Brachypodium distachyon 321 26672 2057 7723 1641 [83] 

AraCyc ver 16.0 Arabidopsis thaliana 627 5229 3585 5451 2820 [83] 

MedicCyc ver 1.0.1.1 Medicago trunculata 219 4010 1498 3426 1215 [84] 

LycoCyc ver 3.3 Solanum lycopersicum 456 34727 2616 8033 1867 [83] 

PotatoCyc ver 1.0.1.1 Solanum tuberosum 201 20713 1079 1317 849 [83] 

CoffeaCyc ver 2.4 Coffea canephora 312 8226 1780 2223 1343 [83] 

EcoCyc ver 22.5 Escherichia coli 350 4500 2023 1611 2936 [85] 

MetaCyc ver 22.5  2666 12313 15198 12006 15089 [86] 

PlantCyc ver 13.0  1013 2890 4630 3475 4544 [83] 

PetuniaCyc ver 2.4 Petunia x hybrid 130 3428 775 294 619 [83] 

NtabacumCyc Nicotiana tabacum 569 69211 3309 19517 2424 [87] 

NbenthamianaCyc Nicotiana benthamiana 541 57139 3008 12506 2163 [87] 

NsylvestrisCyc Nicotiana sylvestris 449 35533 2659 6346 1981 [87] 

NtomentosiformisCyc Nicotiana tomentosiformis 517 34378 2907 9257 2100 [87] 

SolanaCyc Solanaceae family 199 209 835 257 1441 [87] 
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Overall, these existing plant GEMs has potentially proved to be precise, robust, and efficient in 

analysis and prediction of conditional changes in particular expression of central carbon metabolism 

[51,88]. Regarding metabolic engineering, there are some issues related to the application of GEMs 

to microorganisms and plants. Apart from microorganisms, usually plants are unable to grow under 

an organized environmental system. In general, some attention is to be required when applying the 

network flux analysis outcomes of microorganisms to plant metabolic engineering analysis [89]. In 

this concern, Shachar-Hill delivered a descriptive report of lysine production, common in microbes 

and plants [90]. In Corynebacterium glutamicum, lysine productivity was enhanced via the 

application of mathematical modeling system and with the help of these tools major metabolic 

obstacles were identified which leads to tremendous improvement in productivity of lysine [91]. A 

similar approach was made in the endosperm of maize, and no limitation was found. Previously, 

GEMs was unable to be constructed for the secondary metabolites [51], however, the secondary 

metabolism was included in the exceptional Arabidopsis metabolic model [78]. Other challenges 

include the incomplete annotation of plant genomes and its subcellular localization reactions, which 

becomes a hurdle during plant genome reconstruction [92]. Methodologies have been proposed for 

tackling such challenges, like subcellular localizing metabolic reactions, predicting software and 

gene annotating tools for comparative genomics [93, 94]. Integration of proteomic or transcriptomic 

datasets and genome-scale modeling is another initiative which can be applied for exploring the 

complex metabolic activities of plants [95,96]. A combinatory approach was implemented to guess 

the metabolic reaction of Arabidopsis at different conditions, and it was observed that the metabolic 

data along with the transcriptomic data enhanced the predictions of metabolism even the transcripts 

levels do not correlate with the fluxes [94]. Additional exploration has revealed that GEMs 

effectively connects the gap between metabolite-centric and flux means [96]. Constraint-based 

models (CBMs) are generally well known for metabolic network reactions studies. Historically they 

are employed to explore metabolic networks reactions. CBM was constructed in the framework of 

metabolic engineering with the objective to enhance the biomass production of chemicals via 

optimizing metabolic pathways [97]. It is the systems biology which connects to an encoded 

genome with phenotypic whole-cell flux states [98]. 

Genome-scale metabolic modeling in plants  

The growing availability of whole genome sequence database has opened new horizon towards the 

development of metabolic network reconstruction. Genome-scale reconstruction is the predecessor 

of all genome-scale metabolic models. Today numerous databases and tools are available for 

metabolic reconstruction, such as AraCyc for Arabidopsis [79] and RiceCyc for rice [81], PlantCyc 

for plants [99], Plant Metabolic Network PMN (13.0) [100] and MetaCyc [57], along with these for 

compartmentalization reactions AraPerox [101], SUBA [102], and PPDB [103] were used. All these 

resources are useful in modeling reconstruction. Metabolic network reconstruction can address 
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innumerable biological functions like a prediction of cells culture conditions [104]; understanding 

the plant metabolic mechanisms, its regulations, and behaviors [105]; and integrate experimental 

data with phenotype and its prediction regarding the phenotypes. The plant's metabolic function is 

based on the interaction between different subcellular compartments, cells, tissues, and organs.  

And this interaction helps in the reconstruction of organ-specific models, and these models support 

in understanding the complex plant metabolic processes on a whole plant genome scale [106]. In 

spite of all these challenges, useful plant metabolic networks formed for Arabidopsis thaliana 

[77,78,79], maize [82], barley [105], rice [81] and the biofuels crops like sorghum and sugarcane 

[80]. The process of preparing the genome-scale metabolic reconstruction consists of five major 

steps which have been broken down into several sub-steps [107] (Fig 1). 

Fig 1: Flowchart of the metabolic network reconstructions steps 

Operating system accessible for publicized metabolic model 

GEMs are crucial approaches for metabolic engineering study and systems biology because they 

have the potential to simulating complex steady-state behavior. As the area of bioinformatics 

research is expanding day by day, so as the computational tools becomes massive. It extends the 

vast range of software platforms comprising the COBRA toolbox for Matlab [108], COBRApy (a 

python set that assists basic COBRA approach), KBase (Web-based US Department of Energy 

Systems Biology Knowledgebase) [109] and ScrumPy in python [110,111], beside that further tools 

and libraries like OptFlux in Java [112], Cameo [113], and SurreyFBA [114]. The COBRApy 

software assists the next generation of metabolic modeling and utilizes Parallel Python to divide 
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simulations through multiple CPUs permitting faster FVA simulations, which might be time-saving 

because of the large complex nature of plant metabolic models [111]. COBRApy is user-friendly 

software, which let the handlers to create their own constraints and goals [111]. The KBase web-

based software permits users to generate their own workflows which can universal among 

researchers permitting other public domain to generate the simulations [109]. Through KBase, 

approach users can execute standard FBA, pFBA, beside that gene and reaction knockouts [109]. 

Challenging task in plants: Subcellular compartmentation 

Metabolic flexibility increases due to subcellular compartmentation, specialization as well as 

regulation. Subcellular compartmentation demonstrates defiance to metabolic analyses, along with 

MFA. Compartmentation leads sophisticate the structure of the metabolic network in MFA, the 

determination of metabolite labeling and the measurement and localization of metabolic levels that 

might vary for the similar metabolite in diverse compartments. The occurrence of big vacuoles and 

metabolically alive plastids in plants makes further defiance analogized with few fungal and animals 

systems. Kruger, Le Lay & Ratcliffe 2007 revealed in their study that fails to interpret accurately 

for compartmentation, can possibly result to different flux maps, models and assumptions, as was 

revealed in case of useless cycling related with sucrose and glucose yield [115]. MFA analysis has 

the ability to define the relative contributions of diverse compartments to metabolic fluxes if the 

compartmentation might be determined. Beside that MFA possess the ability to disclose the presence 

of multiple pools of the similar metabolite as in case of choline in leaves [116]. Location of enzymes 

and transporters decide the structure of a metabolic network, and the position of those proteins can 

be driven with different level of determination by microscopic immunohistochemistry also 

fluorescence tagging, by proteomics and organelle fractionation, also by targeting projection on the 

basis of sequence. Insufficient, imprecise also ambiguous data on network structure is 

inappropriately modeled in plant metabolism, and precaution must be taken to find a crucial 

hypothesis. Such testing might be computational, to screen either model depend on various 

structures of the network can check evenly well for recognized data, and also perfectly experimental 

data, by pursuing evidence about the position of significant proteins. In dynamic MFA metabolite 

concentrations are used, and it is determined by dividing the total levels calculated after extraction 

by the volume occupied by them, information of their compartmentation is also required. In both 

dynamic as well as steady-state MFA measurement of metabolite labeling is used, and that can be 

distinct for the same metabolite in various compartments [117]. 

Three-dimensional complication of plant systems 

Flux model based on isotopic labeling observations are simplism of authenticity. The numeral of the 

factors that might be perceptively determined are restricted by the presented experimental 

dimensions that report on metabolic construction at the cellular and subcellular levels [117,118]. 

Therefore, the key factor for MFA is to improve the analytical techniques so that models are further 
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standardized to other ‘omics’ accounts. For flux analysis in some cases, tissues might be cultured 

separately or in couplets [119, 120], yet when an individual tissue is mixed its diverse surface can’t 

survive. In cell population of seeds potential imaging equipment with fluorescence [121,122] or 

magnetic resonance [123] have specified the scope of heterogeneity. When such a method along 

with MFA might retrieve the potential of light to re-introduce carbon in evolving embryos and 

characterize gradients in lipid density [124]. Metabolic flux was influenced by the penetration of 

light in Brassica embryos and it promotes to alterations in the tropic state among outer and inner 

cells of the tissue. Identifying a desirable phenotype like as better lipid density in a subsection of 

cells from individual tissue amid flux evaluation beside with other data from transcripts or proteins 

might signify the best comparison to pinpoint the relevant changes required for engineering [125]. 

Furthermore, plant cells have significant subcellular characters with essential pathways such as the 

oxidative reactions in pentose phosphate metabolism [126] and glycolysis [127,128] alive in 

somewhat three spatially diverse positions and together with channeling mechanisms [129]. 

Numerous systematic methods have been related to flux analysis based on either information about 

pool size or metabolite labeling was of concern. Subcellular fractionation approaches can deliver 

pool size evaluations to constrain transient isotopic labeling models [130,131]. In, flux analysis 

explanations of subcellular labeling based on metabolic yields that are precisely synthesized in a 

recognized compartment. Approaches to measuring plastidic origin starches besides with cell wall, 

sucrose or protein glycosylation [8,117] which are extra-plastidial have been essential for deciding 

the degree of equilibration of hexose pools and the capability to compartmentalize models [117]. 

Different pools of acetyl-CoA precursors are used in the biosynthesis of plastidic and cytosolic 

origin of fatty acid along with carbohydrates, so the origin of acetyl-CoA might be deduced by 

suitable labeling and examination of the subsequent fatty acids [132,133]. Isotopic labeling of 

proteins is highly motivated in the previous works. Proteins act as an admirable communicator since 

they are decoded in compartments stable with genome location. Therefore labeled proteins afford a 

way to evaluate the isotopic equilibration of amino acids among organelles [134]. This idea was 

improved latterly by evaluating the labeling in peptides with high-resolution MS [135,136] and then 

exploiting the peptide-based labeling information to computationally rectify flux values [137]. 

Purification methods for organelles 

By approaching organelle purification procedures, we can partially meet the knowledge about 

compartments on proteins as well as metabolites [138,139,140]. In non-aqueous bifurcation, tissues 

are rapidly frozen and then lyophilized under situations in which the position and levels of 

metabolites are as less disturbed as possible [141]. Due to incomplete separation of organelles, 

estimates of the compartmentalized level of the metabolite by this method is depending on 

deconvolution techniques using a marker of a known protein in different compartments [142]. How 

much success is a deconvolution strategy for determining differences in an unknown labeling 
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between compartments is not clear, although lesser amounts of pure organelle fractions would be 

required for label determination by sensitive mass spectrometric techniques? Aqueous fractionation 

methods lead in better separation of organelle fractions [143] that is separated by density-gradient 

centrifugation, also this is necessary for protein localization exertion, though it is rare to preserve 

metabolites position except for less mobile end products. 

Compartment-peculiar info metabolites 

An alternative approach was implemented to resolve the frim metabolite labeling in diverse 

compartments which comprises the less usage of reporter or read-out metabolites that are particular 

to subcellular positions. For instance, a vital metabolic intermediate, acetyl-CoA that performs 

various roles in different compartments, which is not transported across membranes [144,145]. 

Acetyl-CoA (a precursor for lipid synthesis) for the de novo synthesis of fatty acid, formed by 

plastidic pyruvate dehydrogenase [146], while for extension of fatty acid, acetyl-CoA is produced 

in the cytosol [147,148,149]. In these pools, labeling can be resolved by examining fatty acids which 

are synthesized in the plastid as well as extended in the cytosol [132,150]. So, the labeling calculated 

in 16-18 carbon fatty acids classified as the labeling of plastidic acetyl-CoA, besides that labeling 

in the longer fatty acids classified as the labeling of acetyl-CoA in the cytosol. Diverse metabolites 

readout may be used to differentiate the labeling the vital sugar phosphate pools situated in the 

cytosol and plastid. In the plastid sucrose and starch, labeling characterized the isotopic state of its 

precursors, glycans protein and cell walls are traced with the labeling forms of the cytosolic 

carbohydrate from where they produced. Though labeling in sucrose might be calculated instantly, 

chemical breakdown or enzymatic is channelized to assist the study of polymer-associated 

carbohydrates. Hence, for instance, acid hydrolysis of starch and protein glycans produces levulinic 

acid, whom labeling might be examined through NMR [151]. This approach has also potential to 

examine positional enhancement and long array coupling between carbons that gives important 

information for flux analysis [151]. 

Predictive metabolic flux analysis 

There are few methods have been developed for prediction of fluxes through the metabolic networks 

for wild-type and other phenotypes.  

Flux balance analysis (FBA) 

FBA is a mathematical strategy for studying the movement of metabolites via a metabolic network. 

FBA primarily makes use of the stoichiometry matrix S of size m x r, where m is the number of 

metabolites in the system and r is the number of reactions. Every row of S specifies for a specific 

metabolite in what quantity it participates in each reaction. Therefore, each element (‘j’) of S 

contains the stoichiometric coefficient of metabolite ith in reaction j. The word flux is used to 

describe a reaction rate at steady state. In FBA the aim is to, find a flux distribution of the network 

that fulfill (1) the steady-state condition S.v =0 (this uses the phenomenon that metabolism occurs 
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on a fast time-scale compared to gene regulatory events and thus that accumulation rates of 

metabolites are zero effectively [152], (2) thermodynamic feasibility (some reactions are known to 

be irreversible), (3) maximal flux constraints when these are known and (4) a linear objective 

function to be maximal. This objective function is typically one of the fluxes in the model, such as 

biomass synthesis, or a linear combination of several fluxes, such as biomass production plus a 

product of our desire. Because the objective function is linear in the fluxes, this technique is an 

application of linear programming. Mathematically, FBA can be summarized as: 

 

where c and v are column vectors of length r, the number of reactions. This can be thought of as first 

constraining all possible solutions to the ones that allow a steady state and satisfy the bounds (this results in 

a multi-dimensional cone within the null space of S) and then finding the optimal solution among the 

remaining degrees of freedom. 

 

Fig 2. Minimal information required for the metabolic flux analysis. Metabolic reference pathway 

adopted from KEGG pathways database (https://www.genome.jp/kegg-bin/show_pathway?map01100) 

Metabolic flux remains in quasi-steady state concerning growth and typical process transients 

because the metabolism has transient lower than few minutes in comparison to the cellular growth 

rate and dynamic changes in the organism’s surrounding. Two things of metabolic information are 

required to formulate the mathematical flux balance model: first, metabolic stoichiometry is needed 

to note down all the chemical reactions that occur in the metabolic network of concern, and the 

second requirement is the materials required in the metabolic system, which includes maintenance 
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requirements, biomass synthesis and in certain cases significant product secretion [15]. 

Stoichiometric model is formulated by acquiring the metabolic information and putting the data into 

a suitable mathematical framework by supposing that the cell is struggling to encounter a specific 

objective [15]. The genome-scale metabolic network reconstructions give information about the 

biochemical reactions ongoing in an organism and also about the enzymes that carry out those 

reactions. These enzymes get encoded by the genes, and hence through the genome-scale metabolic 

network, we come to know about the genes that regulate particular metabolic reactions. FBA 

calculates the flow of metabolites through these metabolic reactions, thus making it feasible to guess 

the rate of production of essential biotechnologically metabolite that causes the organism growth 

[53]. Currently, 178 organisms with metabolic models are accessible at 

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms, and by current sequencing 

technology enables the metabolic models can be generated at the high pace each year [107,153]. 

FBA is the critical tool for coupling the knowledge encoded in these models [53]. FBA is mostly 

convenient tool for understanding the functions of the metabolic network system, and it is based on 

linear programming optimization [15,154]. For FBA the only information we need to know is the 

stoichiometric network, which gets generated from genomic information of the metabolic pathways 

of the organisms. All the activities or reactions occurring in the system related to the metabolites, 

like inputs and outputs transport activities and enzymatic reactions are all represents the 

stoichiometric network. Based on the information gathered from the experiment and literature, the 

knowledge of biomass formation in the respective reactions can also be obtained. FBA can explain 

the limits of system production and not this only but also act as a basis for evaluation with 

experimental flux data to propose perfection to the system [155]. In plants limited access of 

experimental data is there, specifically in leaves where CO2 is the substrate, but in case of sink 

tissues, ample data sets are there in which sucrose and amino acids act as a substrate [7,156]. Fluxes 

produced by FBA might also beneficial even in absence of experimental data for evaluation, as it 

might emphasize the curial reactions, that in some circumstances will unable to conclude without 

experimental data. When a set of fluxes generated through FBA model, to know about the flow of 

carbon one may not only see the fluxes in the figure but also have to explain all the metabolite 

sources and sinks. This might be specifically crucial for energy sources like NADPH, ATP, CO2,   

as these energy sources paths disclose the background of the simulated cell activities [155]. A better 

insight of maximized yield might be gained by leading chains of constraint sets whose resolution 

can be matched. For instance, one can measure not only outcome number but also metabolic 

regulation under diverse circumstances such as intensity of light or nutrient accessibility, one can 

compare metabolic activity in different sources of nutrients like nitrogen sources, nitrate (least 

reduced) between ammonia (highly reduced) to examine either the preserving in reducing equals 
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can be practical, if so at what limit. One can explore the capabilities of diverse metabolic types, like 

as C3 between C4 carbon fixation [157].  

Minimization of metabolic adjustment (MOMA) and regulatory on/off minimization (ROOM) 

Many computational methods have been developed for the prediction of metabolic fluxes. Two 

approaches have been established for that purpose to forecast flux adaptation in reaction to a given 

variation in a specific flux, like as in knockout mutation. The first methodology is founded on 

MOMA. This is established through minimization of the sum of the squared differences between 

the initial and oriented flux maps. MOMA forecast is in general close contract with experimental 

results, and its feasible usage makes MOMA an important tool for metabolic engineering [158]. The 

other methodology, ROOM, is established on the minimization of the number of flux varies [159]. 

The development of this technique ROOM is based on the examination that gene expression 

drastically changes after the organism undergoes an affective disorder in development quickly after 

a metabolic perturbation, but after a period of acclimation, gene expression returns to their initial 

period near to the one prior to perturbation. ROOM forecast is in general close contract with 

experimental results for bacteria, predictions are also in closely similar with experimental data for 

bacteria, and ROOM predictions surpass MOMA forecast in experiments where an acclimation 

period has been involved. In comparison to MOMA, ROOM generally finds several comparable 

solutions, which makes the applied application of ROOM for metabolic engineering least 

unambiguous, exclusively for the large complex networks of plant metabolism. ROOM, which is 

established on the biological examination, does give an understanding of how metabolic maps are 

controlled [117]. 

Distinct knowledge about the functioning of plant systems provide by MFA studies 

Different MFA approaches are utilized to explore diverse plant tissues like cell suspension, 

microalgae, developing seeds, stems, root tips, transformed root cultures, flowers, leaves, trichomes, 

and tubers. Numerous studies are conducted in the past to examine the capability for, and also 

elucidate the difficulties in executing MFA in entire plants [160,161,162]. In recent years work 

towards applying MFA with plants under physiologically normal states has taken different directions. 

Although the steady-state MFA methodology has addressed vital queries, comprising the role of 

Rubisco in evolving seeds and the oilseed metabolism regulation [163], despite that they face 

challenge towards their application to higher organisms like mammals and plants because of their 

mosaic media preparation, subcellular localization, and gradual labeling dynamics [117]. So far, the 

primary application of MFA has done on confined cells or tissues, in which frequently fifty to 

hundred reactions are, checked [117]. Alternate technical approaches are encouraged due to a 

technical obstacle in prolonging the analysis to plant networks [154], like as the union MFA/EMA 

[7] and MFA/FVA, which have been practiced to study evolving B. napus embryos [164,165]. To 

acquire the isotopic steady state MFA needed a long duration of time, so to avoid that isotopically 
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nonstationary MFA (INST-MFA) technique came into existence. INST-MFA explores the metabolite 

labeling formats acquired during the transient labeling period earlier to isotopic steady state. 

Photosynthesis and human cells are successfully studied through this technique [131,166,167]. 

13CO2 labeling gives rise to the regular labeling of all metabolites in the steady state, due to this 

steady state MFA is unsuitable to photoautotrophic tissues [168]. Thus, steady state MFA is a 

legitimate technique for exploring mixotrophic and heterotrophic plant tissues, so it can’t applicable 

in photosynthesis studies. Sweetlove et al. revealed the uncertainty of the isotopic steady state in 

leaves because of complexity emerged from the light-dark cycle and the slowdown ratio of 

metabolic pools [169]. Young et al., acknowledge this problem through the INST-MFA technique in 

cyanobacterium Synechocystis [167]. Comprehensive flux map was acquired for entire Calvin-

Benson cycle reactions along with few side reactions, besides that it consists of a malic enzyme, 

photorespiratory pathway and that catalyze by Glucose-6-phosphate dehydrogenase. The metabolic 

pool sizes remain suite as free parameters in this analysis, while in the kinetic flux balancing, a 

similar formulation in application, in Arabidopsis, model was constrained with measured pool sizes 

acquired by mass spectrometry and non-aqueous fractionation to deliver acquaintance on subcellular 

pool sizes. Szecowka et al., derived a set of intracellular fluxes in integral irradiated Arabidopsis 

rosettes [131]. They examined the dynamic reallocation of the label from 13CO2 delivered to leaves, 

and from that, a minor set of fluxes were measured. This technique endorsed to resolve kinetic 

fluctuations in isotope configurations of 40 metabolites of major carbon metabolism and to 

standardize them alongside four classically resolved flux signatures of photosynthesis [131]. 

Non-destructive methods for metabolite analysis 

In vivo non-destructive approaches such as NMR spectroscopy and imaging that might give 

knowledge on the levels and discovered labeling metabolites [170,171]. Generally, NMR is 

restricted by subtlety to coverage on the large adequate metabolites, besides that in suitable 

circumstances, it provides methodologies to the circulation of those metabolites through subcellular 

compartments, commonly among the vacuole and the remnant of the cell. A substance which is 

positioned in multiple intracellular environments might provide specific signals based on either the 

signal are sensitive to any change in pH, ionic composition or viscosity among those compartments 

[171,172]. The pH reliance of NMR signals is mainly used for phosphorylated compounds as well 

as organic acids [173,174], also information about compartment has been getting on amino acids 

[175,176] and ammonium [177]. Steady-state fluxes directly projected by in vivo NMR 

spectroscopy by magnetization transfer; besides that, it is so interpretive in heterotrophic plant 

tissues about the turnover of phosphorylated compounds [171]. For high-quality time course 

measurements of labeling can also be obtained by in vivo NMR reveal in by Troufflard et al, that 

reflects fluxes directly [178]. Protein reporters of fluorescent along with fluorescence microscopy 

gives further non-destructive in vivo technique to analyze metabolite levels in various compartments 
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[179,180]. For numerous metabolites, sensitive reporters have been generated mostly for amino 

acids and sugars, so that might be particularly aimed at numerous diverse intracellular compartments. 

By making the calculation of subcellular metabolites density and their fluctuations in response to 

perturbations [180]. 

Kinetic models 

In FBA of Genome-Scale Metabolic models, it was presumed that there is no any alteration in the 

density of metabolites over time. However, in kinetic models, it has the capability to simulate the 

dynamic alterations in concentration over time by comprising enzyme limits [181,182]. Besides that 

it might directly integrate substrate concentrations, substrate-level constrain barriers and enzyme 

levels [181,183,184]. It is the utmost comprehensive and analytically mathematical depiction; it 

needs dynamic behavior of enzymes as input and usually practiced to least proportion of metabolic 

network, ranged from 10 to 50 reactions [185]. In contrast to the approach of steady state 

stoichiometric, dynamic models measure both fluxes and metabolite concentration within a time-

dependent manner of the system [186]. In this method, each reaction is distinct as an enzyme which 

catalyzes the transformation of its substrate into product and reactions are displayed using diverse 

equations. A kinetic model might be both predictive and inclusive if there is sufficient decisive data 

[187,188]. Wang et al. developed a kinetic model of monolignol biosynthesis in Populus 

trichocarpa by carrying an inclusive study to get the reaction and kinetic parameters of all the related 

enzymes form on functional recombinant proteins. Because of the obstacle faced in procurement 

the needed information, yet limited inclusive model has been existing in plants metabolism [188]. 

This deficiency might be overcome with the structural-kinetic model that can deliver a potential 

way. This technique signifies an intermediate bond between the several dynamic kinetic models and 

the stoichiometric methods. Despite it unable to describe exact dynamic behavior, it defines the 

constancy and vitality of the precise metabolic state and rectifies associated interactions and 

parameters leading the system’s dynamic features. Steuer et al., gives the precise mathematical 

description, along with the projected workflow for modeling [189]. A structural kinetic model was 

constructed to examine the Calvin-Benson cycle which comprising of 18 metabolites and 20 

reactions. The model effectively educes dynamic characteristic of the system without depending on 

any specific postulation about the active form of the kinetic rate equations [189]. Steuer et al., 

implemented the same method to the TCA cycle in plants to identify and evaluate the dynamic 

behavior [190]. To negotiate the difficulties another method has been implemented to gather the 

kinetic model in a “top-down” fashion, amounting to fitting the model to the observed metabolite 

concentrations and fluxes. This methodology was practiced to model the benzoic system in the 

Petunia hybrida flower that leads to effective recognition of the vital flux-controlling steps [191]. 

In sugarcane (Saccharum officinarum) a “bottom-up” kinetic modeling methodology has been 
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designated in modeling phloem flow in the form of a convection-diffusion reaction framework 

[192]. 

2. CONCLUSION 

Genome-scale metabolic modeling is explicated quickly and might soon attain the point where it 

might commence to make an influence on plant metabolic modeling fashion. Even so, severe 

difficulties are there which have to address before to implement it for plant metabolic models at 

genome-scale level. New modeling technique like INST-MFA and flux profiling approach likewise 

along with sophisticated labeling techniques will overcome the hindrances and uplifts the accuracy 

of modeling results. Newly progress in INST-MFA strategies will bring rapid accuracy and new 

occasions to the understanding of complicated metabolic networks and pathways and better 

interpretation of the cellular community like subcellular compartmentation which is the more 

complicated issue in plants. 
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