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ABSTRACT: Non-coding RNA (ncRNA) is the RNA that is not converted into protein rather 

produces functional RNA molecules. The type of non-coding RNAs include microRNA, snoRNA 

and many other small RNAs like siRNAs and microRNAs. Identifying non-coding RNA has emerged 

over the past decade as a hot trend in bioinformatics. Many techniques are developed for 

classification of non-coding RNA and it is appropriate to select a particular technique according to 

the situation and circumstances. In this article, several machine learning techniques on classification 

of non-coding RNA are discussed with their merits, limitations and application scope to aid people 

in selecting a suitable method and obtaining a reliable result. These techniques are compared on the 

basis of their performance and accuracy. The future scope is also provided. 
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1.INTRODUCTION 

Non-coding RNA (ncRNA) does not produce encoding proteins [1]. They do produce functional 

RNA [2]. Most non-coding RNAs provide functions that are comparatively generic in cells like 

tRNAs and rRNAs are used in mRNA translation and small nuclear RNAs are used in splicing. 

Earlier, Non-coding RNA (ncRNA) were seen as junk gene or transcriptional noise [3]. This 
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perception has changed over time. Now it is no longer seen as junk. Due to massive volumes of data 

used in human next-generation sequencing (NGS), finding the structure and function of ncRNAs is 

a difficult task [4]. The research in non-coding RNAs is now being taken with more interest, as many 

biological functions associated with it, have been found. ncRNAs are involved in many processes 

like gene regulation in mammals [5]. Non-coding RNA’s close associativity with human disorders 

and diseases like cancer [6], makes it an important topic for research in healthcare. Over the last 

decade, classification of non-coding RNA has become a hot trend in bioinformatics. There are many 

non-coding RNA types like ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small RNAs such 

as siRNAs, microRNAs, snoRNAs, piRNAs, snRNAs, scaRNAs, exRNAs and long ncRNAs such 

as Xist and HOTAIR [7]. The classification of non-coding RNA is shown in Figure 1. Different non-

coding RNAs are associated with different biological functions. So, classification of non-coding 

RNA is very important to explore the functionality of non-coding RNA. Many machine learning 

techniques are used for classification of non-coding RNA, like recurrent neural network (RNN), 

convolutional neural network (CNN), hierarchical clustering, random forest, support vector machine 

(SVM) and deep sequencing. Machine learning [8] is the study of statistical models and algorithms 

that helps the computers to efficiently perform a task without using direct instructions. Machine 

learning is a subset of artificial intelligence. Only inferences and models are used by machine 

learning.  A model of sample data known as training data is used by machine learning algorithms  

that helps in making decisions or predictions without programming explicitly to complete the task 

[9]. They are used in many applications like computer vision, email filtering, network intruder’s 

detection and classification of non-coding RNA. Machine learning is used where developing an 

algorithm of specific instructions to perform a task is difficult.   

 

 

 

Figure 1: Classification of Non-Coding RNA 
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The main focus of the paper is to discuss machine learning techniques used in classification of non-

coding RNA and their comparison based on performance and accuracy. The rest of the paper is as 

follows, the next section describes overview of non-coding RNA and its types. In the subsequent 

section, various machine learning algorithms used for classification of non-coding RNA are 

discussed along with their applications. Thereafter, comparison of these methods is presented. Finally, 

conclusion and future scope of the research are provided.  

2.Background 

The non-coding RNA was not taken with much interest in the past. It was treated as garbage data in 

the beginning. But with recent researches, it has been established that non-coding RNA do have 

biological functions and many diseases like Alzheimer and cancer are caused due to the non-coding 

RNA [6]. Over the last decade, several machine learning techniques were used for detection of non-

coding RNA that incorporated both supervised and unsupervised learning. These machine learning 

techniques were used to identify new non-coding RNA. Many new non-coding RNAs were found 

with different biological function[6]. Support Vector Machine (SVM) is supervised learning model 

that is used for regression and classification. SVM is implemented by RNAz for classification of 

non-coding RNA. RNAz implements feature extraction of non-coding RNA [10]. This method uses 

multiple sequence alignment. An issue with SVM is that it can be used to find only two classes, it 

cannot be used to classify multiple types of non-coding RNAs at once. It can only be used for 

distinction between coding and non-coding RNA. SVM cannot identify new types of non-coding 

RNA which is the basic requirement for exploring their biological function. Another supervised 

learning technique that is used to identify non-coding RNA is hybrid random forest. This technique 

uses new feature SCORE built on function of logistic regression  that combines five features- 

sequence, structure, modularity, structural robustness and coding potential [11]. Hybrid random 

forest uses genetic algorithm and correlation-based feature selection to capture features. The 

drawback of supervised learning is that it cannot work on unlabelled data. Most of the data of non-

coding RNA is unlabelled as it is still unexplored. For unlabelled data, unsupervised learning 

methods are used that find clusters of data and then map the new data into these clusters [12]. To 

improve on the shortcomings of supervised learning, unsupervised learning techniques like clustering 

are used. Hierarchical clustering is unsupervised learning technique used for clustering unknown 

data. Hierarchical clustering is implemented by RNAscClust, which is used for clustering RNA 

sequences by means of graph-based motifs and structure conservation [13]. This method makes 

groups of paralogous RNAs according to their structural similarities. RNAscClust incorporates 

multiple alignment of RNA sequences. This method uses minimum free energy structures for every 

sequence as a prior information for the folding. Hierarchical clustering is also implemented by 

EnsembleClust. This method helps in identifying new subfamilies of non-coding RNA. It uses 
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structural alignment score as performance metrics [14]. This clustering technique uses all sequence 

alignment and secondary structures. This approach improves on techniques that were previously used 

like LocARNA and FOLDALIGN. Previous techniques calculated similarity based on only one 

optimal structural alignment’s score. EnsembleClust provides balance between clustering quality and 

computational cost. Deep sequencing is another unsupervised learning technique, useful in 

sequencing the non-coding RNA sequences. Deep sequencing is implemented by SHARAKU. 

SHARAKU is a new algorithm that uses next generation sequencing data  and aligns two read 

mapping profiles of non-coding RNAs [15]. It uses sequence information and secondary structure 

information simultaneously for the detection of non-coding RNA. Artificial neural networks also 

implement unsupervised learning. Convolutional neural networks are implemented by CNNClust. 

CNNClust is a machine learning technique that incorporates convolutional neural network for the 

detection of non-coding RNA [16]. CNNClust uses pairwise alignment and extracts position weight 

matrices of sequence motifs that are used for training of convolutional neural network. Recurrent 

neural networks are implemented by lncRNAnet. lncRNAnet is a machine learning technique to 

identify long non-coding RNA using deep learning [17]. It uses both recurrent neural networks 

(RNN) and convolutional neural network (CNN). It performs well for short length sequences. In all 

these techniques, the input is the non-coding RNA sequences generally in fasta format, taken from 

the databases of non-coding RNA. There are many databases of non-coding RNA available including 

RFam, Hugo Gene nomenclature committee (HGNC) database and Genomic tRNA database.  

3. Machine Learning Techniques for Classification of Non-Coding RNA 

In this section, the various machine learning techniques being used in classification of non-coding 

RNA and their applications are discussed. These techniques are used to categorize the dataset into 

different non-coding RNA types. There are three types of machine learning algorithms- supervised 

learning, unsupervised learning and reinforcement learning as presented in Figure 2.  

 

Figure 2: Classification of Machine Learning Techniques 
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3.1 Supervised Learning 

Supervised learning algorithms create a mathematical model that contains both inputs and their 

anticipated outputs [18]. This collection of input-output data pairs is called as training data which 

consists of training example’s set. Every training example has input-output pair consisting of one or 

more inputs and its corresponding desired output. Optimization of the objective function is done 

iteratively. The supervised learning algorithm uses a function that can predict the output 

corresponding to the new inputs. These new inputs are not in training data and are known as testing 

data [19]. The algorithm that improves the performance accuracy of the predicting outputs learns in 

performing the task [20]. Supervised learning includes regression and classification. Regression 

algorithms are used when output can have any numerical value within a range and classification 

algorithm are used when output range consists of limited set of values. Supervised learning is used 

in recommendation systems, ranking, visual identity tracking and speaker verification. Supervised 

learning can used to classify non-coding RNA into different classes of non-coding RNA. It works on 

labelled data from the non-coding dataset. The techniques that use supervised learning are SVM and 

Random forest.  

3.1.1 Support Vector Machines (SVM) 

Support vector machines (SVMs) are collection of supervised learning approaches, that are used for 

regression and classification. SVM classifies the training data examples into two categories of data. 

SVM training algorithm is a binary, non-probabilistic and linear classifier[12]. It can also achieve 

non-linear classification by means of kernel trick, i.e. indirectly plotting the inputs into high 

dimensional feature space. The methods that implements SVM for classification of non-coding RNA 

are provided in Table 1. Peter F. Stadler et al. [10] defined a method RNAz for detecting non-coding 

RNA which implements support vector machines. RNAz combines structure prediction and 

comparative sequence analysis. In RNAz, two basic components are used- thermodynamic stability 

measure and consensus secondary structure. This method incorporates both pairwise alignment and 

multiple sequence alignment of the non-coding RNA sequence with high specificity and high 

sensitivity. The database used in this machine learning technique is RFAM database[21], a 

comparative regulatory genomics database, i.e. the database of non-coding RNA of humans, rats, 

mice and zebrafish. RNAz uses minimum free energy (MFE) RNA folding.  RNAz includes 

calculating z-scores using regression by SVM.  The SVM is used for binary classification, i.e., it 

tells whether it is non-coding RNA or any other sequence. The input parameters that are used includes 

MFE z score’s mean [22] of the different sequences in the alignment without gaps, the number of 

sequences in the alignment, the mean pairwise identity ,  and the structure conservation index (SCI) 

of the alignment. This method takes help of the program RNAALIFOLD[23] that was developed 

originally to guess secondary structure in aligned sequence. This technique uses a folding algorithm 
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for prediction of RNA’s secondary structure by implementing the dynamic programming algorithms. 

When the SCI is close to zero, it indicates that consensus structure is not found by RNAALIFOLD, 

on the other hand, perfectly conserved structures set has SCI close to 1. RNAz provides good results 

for large scale genomic annotation. Jinfeng Liu et al. [24] stated a coding or non-coding (CONC) 

method for classifying non-coding RNA. CONC also implements SVM. It incorporates multiple 

sequence alignment. The databases used by this method are RNAdb[25], NONCODE[26] and 

FANTOM3[27]. It uses protein features for classifying non-coding RNA like amino acid 

composition, peptide length, predicted percentage of exposed residues, number of homologs from 

database searches, compositional entropy, predicted secondary structure content and alignment 

entropy. The limitation of SVM’s implementations is that they can only work on labelled data to 

classify the non-coding RNA. These methods cannot work on unannotated data. Most of the data is 

unlabelled as many types of non-coding RNA are still to be identified.  

Table 1: Studies related to ncRNA classification using SVM 

Author, citation 

and year 

Method Features Alignment Database 

Peter F. Stadler 

et al.[10], 2005 

RNAz [10] Thermodynamic stability measure, 

consensus secondary structure 

Pairwise 

and 

multiple 

sequence 

alignment  

RFAM 

Jinfeng Liu et al. 

[24], 2006 

CONC [24] Amino acid composition, peptide 

length, predicted secondary 

structure content, predicted 

percentage of exposed residues, 

compositional entropy, number of 

homologs from database searches 

and alignment entropy 

multiple 

sequence 

alignment 

RNAdb, 

NONCODE, 

FANTOM3 

3.1.2 Random Forest 

Random forests are learning methods, used for regression and classification. They create many 

decision trees during the training process and store the class in the output. Random forest outputs 

mode of the classes in classification and individual tree’s mean prediction in regression[28]. This 

technique also incorporates decision trees. The methods that implements random forest for 

classification of non-coding RNA are provided in Table 2. Marasri Ruengjitchatchawalya et al.[11] 

proposed a hybrid random forest tool for classifying non-coding RNA. It is a tool for classification 

based on hybrid random forest combined with a model of logistic regression to differentiate long as 
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well as short non-coding RNA sequences. This method includes a new feature SCORE, built on 

logistic regression function combining five features, i.e. sequence, structure, structural robustness, 

coding potential and modularity. Hybrid random forest is a classifier built on ensemble of multiple 

decision trees and random forest. This technique uses datasets including Rfam[21], RefSeq[29], 

NCBI GenBank genome database and lncRNAdb[30] database. In this method, a total of 369 features 

are extracted for prediction of non-coding RNA. Out of these features, genetic algorithm and 

correlation-based feature selection are used to capture features having good predictive power. 

Logistic regression model is used to find relationships between the features. The sequence similarity 

is found from basic local alignment search tool (BLAST) [31]. Random forest acts as main classifier 

with decision trees as base classifiers. The ensemble of trees in the random forest (RF) can capture 

the heterogeneity of non-coding RNA subfamilies. The model is robust and uses composite feature 

that improves the performance of the classifier. This technique is used for classification of both 

known and unknown non-coding RNA. Yanni Sun et al. [32] proposed a method lncRNA-ID for 

identifying long non-coding RNA using balanced random forests. This method incorporates multiple 

sequence alignment. The database used by this method is  LncRNADisease database[33]. 

Table 2: Studies related to ncRNA classification using Random Forest 

Author, citation and 

year 

Method Features Alignment Database 

Marasri 

Ruengjitchatchawalya 

et al.[11], 2014 

Hybrid 

random 

forest[11] 

sequence, structure, 

structural 

robustness, 

modularity and 

coding potential 

multiple 

sequence 

alignment  

Rfam, RefSeq, 

NCBI GenBank 

genome database 

and lncRNAdb 

database. 

 

Milad Miladi et al. 

[32], 2017 

lncRNA-

ID[32] 

open reading frame 

(ORF), protein 

conservation and 

ribosome 

interaction 

profile  

hidden 

Markov model 

(profile 

HMM)-based 

alignment 

LncRNADisease 

database[33] 

3.2 Unsupervised Learning 

Unsupervised learning algorithms take a data set that comprises only inputs and then do clustering 

or grouping of the data points [34]. The algorithm learns from unlabelled data, data that is not 

classified or clustered. It identifies similarities between the data and make clusters based on the 

similarities. Unsupervised learning is used in density estimation in statistics [35]. Clustering is the 

allocation of datasets into subsets called clusters. The data of the same cluster is similar conferring 

to one or more criteria and data from different clusters are not similar. Every clustering technique 

derive different assumption from the data’s structure that is demarcated by a similarity metric. 
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Similarity metrics is difference between the clusters and internal compactness is similarity between 

data of same cluster. Many methods use graph connectivity and estimated density as similarity 

metrics. The techniques that use unsupervised learning are hierarchical clustering, deep sequencing 

and artificial neural networks like convolutional neural network (CNN) and recurrent neural network 

(RNN). 

3.2.1 Hierarchical Clustering 

Hierarchical clustering is a category of cluster analysis that create a hierarchy of clusters. There are 

two kinds of hierarchical clustering – divisive and agglomerative [36]. Divisive clustering is a top-

down approach, where all observations are started on clusters and splits are moved hierarchically, 

moving down the hierarchy. Agglomerative clustering is a bottom up approach, where every 

observation is started in its individual cluster and cluster’s pairs are merged, moving up the hierarchy. 

The merging and splitting are done by greedy approach. The results of clustering are represented by 

dendrograms. The methods that implements hierarchical clustering for classification of non-coding 

RNA are provided in Table 3. Yasubumi Sakakibara et al. [14] proposed a method EnsembleClust for 

clustering non-coding RNA. EnsembleClust provides a innovative method for hierarchical clustering 

of non-coding RNA that could be used to identify new non-coding RNA families [14]. It helps in 

exploring the functional diversity of non-coding RNA. EnsembleClust implements an unsupervised 

learning algorithm [14]. This method takes the input as unlabelled data and build clusters of the non-

coding RNA. Non-coding RNAs are clustered based on structural alignment scores. But 

computational cost of structural alignment is high, so approximate algorithms are employed.  It uses 

all possible sequence alignments and secondary structures. There are many unknown non-coding 

RNAs, so clustering is very important to identify new types of non-coding RNA. This technique 

incorporates pair-wise alignment of non-coding RNA sequence. For accurate clustering, a reliable 

measure is used that would take into interpretation both secondary structures and primary sequences. 

The similarity score is obtained from these measures. Previously used methods were LocARNA [37] 

and FOLDALIGN [38] that calculated similarity based on one optimal structural alignment’s score. 

The scoring function for the sequence alignment is designed using all the possible secondary 

structures. This method uses Waterman algorithm[39] for sequence alignment and McCaskill 

algorithm [40] for secondary structure. These both algorithms provide sequence alignment faster than 

the previously used Sankoff’s algorithm[41]. EnsembleClust provides better performance than 

LocARNA v1.5.2 [37], FOLDALIGN v2.1.1 [38], and Stem kernel v216c [42]. With high accuracy, 

EnsembleClust provides balance between clustering quality and computational cost. Milad Miladi et 

al. [13] proposed a method RNAscClust for identification of non-coding RNA. RNAscClust is used 

for grouping RNA sequences using graph-based motifs and structure conservation  [43]. This 

technique groups paralogous RNAs according to the structural similarities. RNAscClust incorporates 
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multiple alignment of RNA sequences. This technique finds minimum free energy structures for 

every sequence, as a preceding information for the folding. Then clustering of paralogs is done using 

graph kernel-based strategy identifying the common structural features. The RNA structures are set 

as graphs and graph kernels generate sparse feature vectors, creating a pairwise similarity notion. 

Increasing the degree of compensatory base pair changes in the alignments improves the clustering 

accuracy. Iterative clustering is used, creating more and more accurate feature vectors after every 

iteration. RNAscClust allows millions of occurrences to be clustered. The sequence is converted into 

graph where each nucleotide is taken as vertices with labels A, U, G, C with the base pair relations 

and backbone being encoded as edges. Base pair stacks are represented by adding base pair vertices 

adjacent to the existing base pair vertices. The structures are compared using graph kernels.  This 

method also takes into account the base pair changes that were not being considered by many 

clustering approaches.  RNAscCLust uses the RFam database of non-coding RNA. It uses 

neighbourhood subgraph pairwise distance kernel (NSPDK) [44] to extract sparse feature vectors. 

This method provides accurate clustering with linear runtime which makes alignment of large 

clusters possible.  

Table 3: Studies related to ncRNA classification using Hierarchical Clustering   

Author, citation 

and year 

Method Features Alignment Database 

Yasubumi 

Sakakibara et 

al.[14], 2011 

EnsembleClust 

[14] 

structural alignments 

score 

Pairwise 

sequence 

alignment 

ENSEMBLE 

Milad Miladi et al. 

[13], 2017 

RNAscCLust 

[13] 

structure conservation 

and graph-based motifs 

- RFAM 

 

3.2.2 Artificial Neural Networks (ANNs)  

Artificial neural networks (ANNs) are computing systems, encouraged by the biological neural 

network that constitutes brains of humans or animals [36]. ANN is a framework of several machine 

learning algorithms that function together and process many intricate data inputs. These systems 

learn by examples i.e. training data, without being programmed to perform the task with task-specific 

rules. ANN consists of collection of connected nodes, known as artificial neurons. The learning 

process is adjusted by the weights of neurons and edges. The neurons are combined into layers. 

Signals transmit from the first layer to the last layer, crossing the hidden layers in between. Artificial 

neural networks are used in speech recognition, computer vision, video games, medical diagnosis 

and social network filtering. Deep learning implements many hidden layers in an artificial neural 

network. Some of its applications are computer vision and speech recognition [37]. CNN and RNN 

are types of artificial neural networks that are used for classification of non-coding RNA. 
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3.2.2.1 Convolutional Neural Networks (CNNs) 

Convolutional neural networks (CNNs) are class of deep neural networks and are mostly used in 

image processing. They incorporate a variation of multilayer perceptron and helps in minimizing 

pre-processing. CNNs are used in recommender systems, image recognition, image classification, 

natural language pre-processing, classification of ncRNA, medical image analysis etc. They 

comprise of input layer, output layer and intermediate layers i.e. hidden layers.  The hidden layers 

contain RELU layer, pooling layers, pooling layers, convolutional layers, normalization layers and 

fully connected layers. The convolutional layer applies convolution operation to the input before 

transmitting to the next layer. The convolution operation tries to simulate a neuron’s response to 

visual stimuli.  The methods that implements CNN for classification of non-coding RNA are 

provided in Table 4. Yasubumi Sakakibara et al. [16] proposed a method CNNClust for clustering 

non-coding RNA. This technique incorporates pair-wise alignment of non-coding RNA sequences. 

Derived position weight matrices of sequence motifs are used for training of convolutional neural 

network. Two types of distributed representation are used by CNNClust i.e. one hot coding and 

word2vec. Secondary structure information and read mapping are also used. Similarity score matrix 

is calculated for every pair of the RNA sequences. The clustering is done to form clusters of similar 

structures. CNNClust clusters non-coding RNA into positive or negative class. When both sequences 

are of same class then it is a positive class, otherwise it is a negative class. Many new types of 

snoRNA, microRNA and tRNA are found by this method. The databases used by this method are 

Rfam, HUGO gene nomenclature committee (HGNC) databases, Ensembl and genomic tRNA 

database (GtRNAdb). Antonino Fiannaca et al. [47] proposed a method nRC for classification of 

non-coding RNA. This method uses secondary structure features for detection of non-coding RNA. 

It incorporates multiple sequence alignment. The database used by this method is Rfam.  

Table 4: Studies related to ncRNA classification using CNN 

Author, citation 

and year 

Method Features Alignment Database 

Yasubumi 

Sakakibara et 

al.[16], 2018 

CNNClust 

[16] 

Derived position 

weight matrices 

of sequence 

motifs 

pairwise 

sequence 

alignment  

Rfam, HUGO gene 

nomenclature committee 

(HGNC) databases, Ensembl 

and genomic tRNA database 

(GtRNAdb) 

Antonino 

Fiannaca et 

al.[47], 2017 

nRC[47] Secondary 

structure features 

Multiple 

sequence 

alignment 

Rfam 
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3.2.2.2 Recurrent Neural Network (RNN)  

Recurrent neural network (RNN) is a type of artificial neural network where the connections among 

the nodes make a directed graph along a sequence [38]. RNNs also use the memory to transmit the 

sequences of the input. RNNs are used in speech recognition, handwriting recognition, grammar 

learning, robot control and human action recognition. These networks have many layers and each 

node in a layer is connected by directed connections to the node of the next layer. Every node has a 

real valued time-varying activation and every connection has a weight that has a real value. The 

nodes are either in input layer, output layer or hidden layer. The methods that implements RNN for 

classification of non-coding RNA are provided in Table 5. Sungroh Yoon et al. proposed a method 

lncRNAnet for classifying non-coding RNA. lncRNAnet  identifies long non-coding RNA by means 

of deep learning and next generation sequencing[17]. Both recurrent neural networks (RNN) and 

convolutional neural network (CNN) are used in this method. RNN is used for RNA sequence 

modelling and CNN is used for spotting stop codons to find an open reading frame (ORF) indicator. 

lncRNAnet performs well for short length sequences. This method classifies lncRNA from protein-

coding transcripts. The previous methods relied heavily on the features extracted from the known 

long non-coding RNA, their genomic profiles attained from database searches and multiple sequence 

alignments (MSA). lncRNAnet learns intrinsic features by RNN for RNA sequence modelling.  The 

RNN uses backpropagation through time (BPTT) and one-hot coding scheme, the sequence is pre-

processed for ORF indicator and transcript sequence. In one-hot coding scheme, each nucleotide, i.e., 

A, U, G, C is encoded as four-dimensional binary vectors. lncRNAnet uses datasets of GENCODE, 

ENSEMBL and Human and Vertebrate Analysis and Annotation (HAVANA) group databases. This 

technique provides robust performance irrespective of variation of sequence length and helps in 

identifying new lncRNA from the ample transcriptome data. Sungroh Yoon et al.. [49] proposed a 

method deep RNN for classification of non-coding RNA. This method uses secondary structure 

features for identifying non-coding RNA. It incorporates pairwise sequence alignment. The 

databases used in this method are NCBI, fRNAdb and NON-CODE. 
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Table 5: Studies related to ncRNA classification using RNN 

Author, 

citation 

and year 

Method Features Alignment Database 

Sungroh 

Yoon et al. 

[17], 2018 

lncRNAnet 

[17] 

Open reading 

frame (ORF) 

indicator 

multiple sequence 

alignment  

GENCODE, ENSEMBL and 

Human and Vertebrate 

Analysis and Annotation 

(HAVANA) group databases 

Sungroh 

Yoon et al. 

[49], 2018 

Deep 

RNN[49] 

Secondary 

sequence features 

pairwise sequence 

alignment 

NCBI, fRNAdb, NON-

CODE 

3.2.3 Deep Sequencing  

Deep sequencing refers to the concept of targeting for maximum unique reads of each section of a 

sequence [39]. This technique is also known as next generation sequencing. Deep sequencing is 

helping the researchers to detect rare microbes or cells that comprise of as small as 1% of the original 

sample. It is used in microbial genomics, oncology, cancer research and other researches that involve 

rare cell populations. The methods that implements deep sequencing for classification of non-coding 

RNA are provided in Table 6. Yasubumi Sakakibara et al. [15] proposed a method SHARAKU which 

implements deep sequencing for classification of non-coding RNA. SHARAKU incorporates a new 

algorithm that aligns two read mapping profiles of non-coding RNA’s next generation sequencing 

data. This method implements a read mapping profile alignment program that uses decomposition 

for aligning and folding RNA sequences simultaneously (DAFS) program [51]. The read mapping 

profiles allows common processing patterns to be detected. Sequence and secondary structure 

information are taken simultaneously in this method. The sequences are read from BAM format that 

is a binary format for storing sequence data and also helps in compressing the data. This technique 

helps in finding non-coding RNAs articulated in the brain, more specifically, hippocampus of the 

left brain. This method uses NCBI Reference sequence database, ENSEMBLE database and next 

generation sequencing output. SHARAKU achieves higher accuracy than deepBlockAlign [40].  

SHARAKU can only be implemented to labelled non-coding RNA sequences. Rosemarie Weikard 

et al. [53] proposed a method of deep next generation sequencing for classification of non-coding 

RNA. This method uses protein coding features to differentiate between coding and non-coding RNA. 

It incorporates pairwise sequence alignment. The databases used in this method are lncRNA, NCBI 

and NONCODE.  
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Table 6: Studies related to ncRNA classification using Deep Sequencing 

Author, 

citation and 

year 

Method Features Alignment Database 

Yasubumi 

Sakakibara et 

al. [15], 2016 

SHARAKU 

[15] 

Similarity 

score 

matrix 

Pairwise 

sequence alignment 

NCBI Reference sequence 

database, ENSEMBLE 

database and next 

generation sequencing 

output 

Rosemarie 

Weikard et al.. 

[53], 2013 

Deep next 

generation 

sequencing [53] 

Protein 

coding 

features 

Pairwise 

sequence alignment 

lncRNA, NCBI, 

NONCODE 

 

3.3 Reinforcement Learning 

Reinforcement learning is the type of machine learning that takes action to maximize reward in a 

particular solution[54]. This learning is different from supervised learning. In supervised learning, 

there is a desired output for the corresponding inputs. While in reinforcement learning, there is no 

desired output for the corresponding input, but the reinforcement agent decides what to do to perform 

the task. It learns by experience as there is no training dataset. The decisions are made sequentially, 

i.e., current output depends upon the current input state and the next input state depends upon the 

output of the previous input. Most of the reinforcement algorithms use dynamic programming. They 

are used in information theory, genetic algorithms, simulation-based optimization, operations 

research, control theory, game theory, swarm intelligence and statistics[55]. They are implemented 

when exact mathematical model is not feasible. 

4.  Comparative Analysis between different Machine Learning Techniques used for 

Classification of Non-Coding RNA 

In this section, comparative analysis between different machine learning techniques used for 

classification of non-coding RNA is provided.  The comparison is done on the basis of learning 

algorithm, advantages, disadvantages and performance metrics. Different techniques perform well in 

particular situation and the type of dataset used. The link for the online resource tool is also provided 

wherever available. The input format is fasta in most of the methods that implement these machine 

learning techniques. The comparison is presented in Table 7. 
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Table 7: Comparative Analysis of Different Machine Learning Techniques used for Classification of Non-Coding RNA. 

Techniqu

e used 

Author, 

citation and 

year 

Method Learning 

Algorithm 

Advantages Shortcomings Online resource 

tool 

Input 

Format 

Performance 

metrics 

SVM 

  

Peter F. Stadler 

et al.. [10], 

2005 

RNAz  Supervised  can detect variety of ncRNAs by 

using only thermodynamic stability 

and evolutionary conservation, 

suitable for large scale genomic 

annotation, predicts accurate model 

of consensus structure. 

tmRNA and U70 snoRNA  

are difficult to detect, 

represents two diagnostic 

features that are not definite 

for a particular class of 

ncRNA, can be replaced by a 

direct statistical model, 

cannot identify new families 

of non-coding RNA from 

unannotated transcriptions 

www.tbi.univie.ac.a

t/~wash/RNAz. 

.maf and .aln Thermodynamic 

stability measure 

and consensus 

secondary 

structure 

Jinfeng Liu et 

al.. [24], 2006 

CONC Supervised  accounts for the sequencing errors 

and can capture protein irrespective 

of the error’s position and type of 

error  

doesn’t perform well on 

novel transcripts 

- .fasta Area under the 

ROC curve 
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Random 

forest  

 

Marasri 

Ruengjitchatch

awalya et al.. 

[11], 2014 

Hybrid 

random 

forest  

Supervised  is robust due to random selection of 

features, provides high performance 

in identifying new ncRNAs, 

provides high accuracy for both 

known and unknown ncRNAs. 

The framework is may not be 

completely accurate to 

incorporate new ncRNA 

families. 

 

http://ncrna-

pred.com/HLRF.ht

m 

.fasta, 

sequence of 

variable 

length 

ranging from 

75 to 200nt 

SCORE based on 

-sequence, 

structure, 

structural 

robustness, 

modularity and 

coding potential 

Yanni Sun et al. 

[32], 2015 

 

lncRNA-ID Supervised  has high sensitivity, 

takes assistance of alignment-based 

features having good discriminative 

power, has shorter running time, 

easy to use, does not require a large 

number of training data 

 cannot work on unlabelled 

data, the performance and 

accuracy can further be 

improved. 

https://github.com/ 

zhangy72/LncRNA

-ID  

.fasta 

 

Score cut-off of 

the dataset 

Hierarchi

cal 

Clusterin

g 

 

Yasubumi 

Sakakibara et 

al.[14], 2011 

EnsembleCl

ust  

Unsupervise

d 

 utilizes all possible secondary 

structures and sequence alignments, 

performs clustering to identify new 

non-coding RNA from unannotated 

transcriptions, provides balance 

between quality of clustering and 

computational cost, accuracy is good 

even when sequence identity is 

below 60%, can decrease human 

labour costs of clustering. 

 performance can further be 

improved. 

 

http://bpla-

kernel.dna.bio.keio.

ac.jp/clustering/ 

.mfa format- 

Multi fasta 

file 

Structural 

alignment score 
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Milad Miladi et 

al. [13], 2017 

RNAscCLu

st  

Unsupervise

d 

 has linear runtime that makes 

alignment of large clusters possible, 

do not need training data for 

clustering as it is unsupervised 

learning.  

 performance and accuracy 

can be further improved. 

http://www.bioinf.u

ni-freiburg.de/ 

Software/RNAscCl

ust 

.fasta Average pairwise 

alignment score 

CNN 

 

Yasubumi 

Sakakibara et 

al.[16], 2018 

CNNClust  Unsupervise

d 

provides good performance and 

accuracy. 

Better dataset can be used to 

achieve good results 

http://www.dna.bio.

keio.ac.jp/cnn/ 

.fa, .npy Position weight 

matrix (PWM), 

read mapping 

profiles 

Antonino 

Fiannaca et 

al.[47], 2017 

nRC Unsupervise

d 

provide good estimates with respect 

to both accuracy and speed, handles 

overfitting, has low standard 

deviation 

execution time can further be 

improved.  

https://github.com/I

carPA-TBlab/nrc/ 

.fasta  

RNN 

 

Sungroh Yoon 

et al.[17], 2018 

lncRNAnet  Unsupervise

d 

 provides robust performance 

irrespective of variation of sequence 

length, helps in identifying new long 

non-coding RNA, successfully 

detects shorter lncRNAs, help in 

identification of new ncRNAs. 

 meaning of the feature is 

hard to understand. 

http://data.snu.ac.kr

/pub/ 

lncRNAnet 

.fa, .h5 Open reading 

frame (ORF) 

indicator 
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Sungroh Yoon 

et al.[49], 2018 

Deep RNN Unsupervise

d 

Has good generalisation ability, 

handles overfitting effectively. 

 features have no explicit 

significance, learning 

secondary structure from 

input sequence is difficult as 

most ncRNA are not known. 

https://github.com/e

leventh83/deepMiR

Gene 

.fasta Secondary 

structure 

information 

Deep 

sequencin

g 

 

Yasubumi 

Sakakibara et 

al.[15], 2016 

SHARAKU  Unsupervise

d 

helps in detecting non-coding RNAs 

expressed in the brain, not only 

detects whole expression patterns of 

non-coding RNA sequence but also 

fragments due to splicing of the 

RNAs. 

 could be implemented only 

on labelled ncRNA 

sequences   

 

http:// 

www.dna.bio.keio.a

c.jp/sharaku/ 

.pm, .sge, .fa Computes 

minimum free 

energy structures, 

graph kernels, 

similarity score 

matrix 

Rosemarie 

Weikard et 

al.[53], 2013 

Deep next 

generation 

sequencing  

Unsupervise

d 

Is capable of deciphering unlabelled 

transcriptional activity by detecting 

new transcripts.  

  focus is only on unlabelled 

transcripts and not on 

labelled transcripts, 

still difficult to identify 

between coding and non-

coding RNA 

 

- .fastq, .gtf, .b

am 

 Sequence 

similarity 
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The comparison of the performance of techniques is done on the basis of accuracy, specificity, 

sensitivity and area under curve (AUC). This comparison is presented in Table 8. 

Table 8: Comparison of Performance of Different Machine Learning Techniques used for 

Classification of Non-Coding RNA 

Technique 

used 

Author, citation and year Implementation Accuracy Specificity 

 

Sensitivity AUC 

SVM 

 

Peter F. Stadler et al.[10], 

2005 

RNAz  0.7527 0.9893 0.7527 - 

Jinfeng Liu et al. [24], 

2006 

CONC  - 0.9520 0.9380 - 

Random 

forest  

 

Marasri 

Ruengjitchatchawalya et 

al.[11], 2014 

Hybrid random 

forest  

0.9211 0.9350 0.9070 - 

Yanni Sun et al. [32], 2015 

 

lncRNA-ID 0.9578 0.9528 0.9628 - 

Hierarchical 

clustering 

 

Yasubumi Sakakibara et 

al.[14], 2011 

EnsembleClust  - - - 0.944 

Milad Miladi et al. [13], 

2017 

RNAscCLust  - - - - 

CNN Yasubumi Sakakibara et 

al.[16], 2018 

CNNClust 0.9800 - - - 

Antonino Fiannaca et 

al.[47], 2017 

nRC 0.8181 0.9848 0.8181 - 

RNN Sungroh Yoon et al.[17], 

2018 

lncRNAnet  0.9179 0.8766 0.9591 - 

Sungroh Yoon et al.[49], 

2018 

Deep RNN - 0.9920 0.8220 - 

Deep 

sequencing 

 

Yasubumi Sakakibara et 

al.[15], 2016 

SHARAKU  - - - 0.985 

Rosemarie Weikard et 

al.[53], 2013 

Deep next 

generation 

sequencing  

- - - - 

 

 

 

http://www.rjlbpcs.com/


Singh et al  RJLBPCS 2019             www.rjlbpcs.com      Life Science Informatics Publications 

© 2019 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2019 March – April RJLBPCS 5(2) Page No.750 

 

4. CONCLUSION 

In this paper, various machine learning techniques used for classification of non-coding RNA are 

discussed. Every technique has its own merits and demerits. These techniques can be used based on 

the particular situation to get the desired results. Convolutional neural networks are good tools for 

identification of non-coding RNA. Many other techniques have been used for clustering new non-

coding RNA, but performance accuracy still has scope for improvement. These techniques can be 

combined to get good results. Better non-coding database can also be used for training of these 

machine learning techniques, to improve the accuracy further. If more non-coding RNA families are 

available in the training data, then more accurate clustering of unknown families is achieved. The 

current trend is more on convolutional neural networks, as it is giving better accuracy and 

performance. This review can help the researchers to select a particular technique according to their 

need.  
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