Life Science Informatics Publications

Life Science Informatics Publications

Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences

Journal Home page http://www.rjlbpcs.com/

Original Research Article DOI: 10.26479/2019.0503.44 EVALUATION OF WATER QUALITY USING WATER QUALITY INDEX OF PIT LAKES, RANIGANJ COAL FIELD AREA, WEST BENGAL, INDIA Saikat Mondal^{1*}, Debnath Palit²

1. Department of Zoology, Raghunathpur College, Purulia, India.

2. Department of Botany, Durgapur Government College, Durgapur, India.

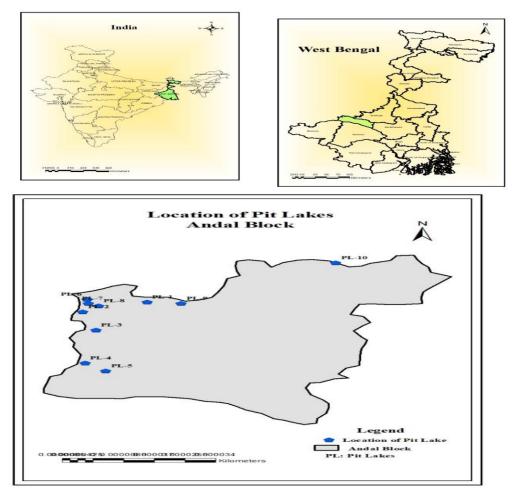
ABSTRACT: The present study was conducted to monitor the status of water quality and to determine the water quality index (WQI) of ten pit-lakes of Andal block under Raniganj coal field, West Bengal, India for three successive seasons from 2016 to 2018. This paper deals with the study of ten physicochemical parameters such as pH, total conductivity, total hardness, total Chloride, total alkalinity, phosphate phosphorus, nitrate nitrogen, total dissolved solids, dissolved oxygen and biological oxygen demand which influence overall water quality. The WQI of these ten pit-lakes varies seasonally. In pre-monsoon season it ranges from 44.11 -191.97, in monsoon it shows highest values and ranges from106.45- 214.69 whereas in after-monsoon it ranges from 25.72-350.48. The results indicate that almost all the pit-lakes shows poor to unsuitable water quality. Therefore, proper treatment of water of these pit-lakes is needed before any use.

KEYWORDS: Water quality, Pit-lakes, Physicochemical parameters, Water quality index.

Corresponding Author: Saikat Mondal*

Department of Zoology, Raghunathpur College, Purulia, India.

1. INTRODUCTION


Water is the prime and vital natural resource for every life entity in the globe, maintaining a perfect ecological balance between economical and various developmental activities. Remembering this pristine and scarce resource for maintain life cycle, it would be a matter of immense concern. In recent decades pressure of population increase, unplanned urbanization and industrialization and agricultural activities demands huge quantity of water. The main source of water is surface water and ground waters but these water resources are under scanner of environmental concern which is continuously reported by several researcher and policy maker [1]. Therefore, to maintain the

Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications ecological health of water bodies and resources, regular and proper monitoring of water quality is necessary. Water Resource is deteriorating day by day because of several reasons, mainly due to rapid civilization and the day is not so far when recent water resources tend to be insufficient to mitigate the future water demand. So to overcome the challenge an alternative water resources are essential and one of the best and potential choice is the conversion of different mine void into pit lakes as a water resources in a sustainable way. In this paper ten selected pit-lakes of Andal block under Raniganj coal field area are taken as study area and the water quality index is assessed seasonally during 2016-2018 to examine and evaluate the recent water quality status and more importantly to prepare framework for proper management and conservation. Water quality index is widely accepted approach to highlight the water quality information to the public domain as well as provide base line idea about the suitability of water for different activities. Fundamentally WQI is calculated mathematically from different test results and gives a single value. Therefore WQI is applied to represent a complex water quality data in a simpler and under stable form [2]. There are different water quality indices have been structured all over the world, such as, US National Sanitation Foundation Water Quality Index (NSFWQI), Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI), British Columbia Water Quality Index (BCWQI), and Oregon Water Quality Index (OWQI) [3, 4, 5]. Horton [6] was probably the pioneer to formulate water quality index and after various researcher developed their own water quality index [7, 8, 9]. Among them, water quality index, formulated by Brown et al, 1970 is widely used [10]. In India, Bhargava is thought to be the pioneer in water quality index study [11]. In this study we used the weighted arithmetic index method formulated by Brown et al, 1970 [10].

2. MATERIALS AND METHODS

Study Area

Raniganj Coalfield (RCF) is the mother of coal mine in India and is spread over different district of West Bengal (Burdwan, Birbhum, Bankura and Purulia) as well as at Dhanbad district in Jharkhand also. For the present investigation ten pit-lakes of Andal block under RCF has been selected. Figure 1 and table 1 represents the detailed location of the study area.

Figure 1: Location map of the study area

Table 1: Details of selected pit-lakes in Raniganj Coal Field (RCF), West Bengal, India.

Sl.	NAME OF THE	MINE	BLOCK	DIVISION	LONGITUDE	LATITUDE
No.	PIT LAKE	AREA	DLOCH		2011011022	
1	JAMBAD	KAJORA	ANDAL	DURGAPUR	23°38′56.5″N	87 ⁰ 10′30.7″E
2	WESTERN	KAJORA	ANDAL	DURGAPUR	23°37'37.58"N	87° 6'4.96"E
	KAJORA					
3	ATEWAL	KAJORA	ANDAL	DURGAPUR	23°36'31.07"N	87° 8'36.00"E
4	KHADANKALI	KAJORA	ANDAL	DURGAPUR	23°35′48.7′′N	87 ⁰ 9′54.9′′E
5	BABUISOL SIB	KAJORA	ANDAL	DURGAPUR	23°35′51.7′′N	87 ⁰ 10′18.6′′E
	MANDIR					
6	SANKARPUR	BANKOLA	ANDAL	DURGAPUR	23°40′12.1′′N	87 ⁰ 14′13.6′Έ
7	REAL KAJORA	KAJORA	ANDAL	DURGAPUR	23°38'2.3"N	87 ⁰ 11'9.6"E
8	DHADARDIHI 1	KAJORA	ANDAL	DURGAPUR	23°37′36″N	87 ⁰ 9′38.7″E
9	DHADARDIHI 2	KAJORA	ANDAL	DURGAPUR	23°37′57.1″N	87 ⁰ 9′51.3″E
10	DHADARDIHI 3	KAJORA	ANDAL	DURGAPUR	23°38′1.9″N	87°9′53.5″E

Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications Water samples were collected from ten pit-lake in Andal block under Raniganj coal field following standard guidelines during pre-monsoon (PM), monsoon (M) and After-monsoon (AM) season over a period of three years (2016-2018). Standard methods were followed to analyze different physico-chemical parameters of the water samples of selected pit-lakes [12]. A set of ten most commonly used water quality parameters namely pH, electrical conductivity (EC), total dissolved solid (TDS), chloride, total alkalinity (TA), total hardness (TH), nitrate nitrogen, phosphate phosphorous, dissolved oxygen (DO) and biochemical oxygen demand (BOD) were taken to generate water quality index (WQI).

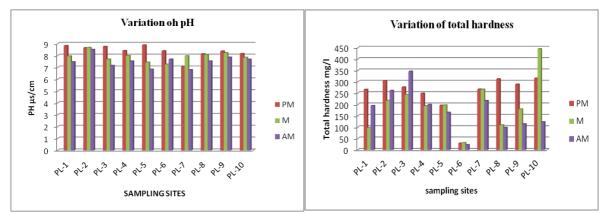
Calculation of WQI

WQI was calculated using the weighted arithmetic index method [10]. The equation is: **WQI**= $\sum QnWn / \sum Wn$ (Qn is the quality rating of nth water quality parameter and Wn is the unit weight of nth water quality parameter). Qn was calculated by the equation: Qn= 100 [(Vn -Vi) / (Vs -Vi)]; where Vn is the actual amount of nth parameter present;Vi is the ideal value of the parameter [Vi = 0, except for pH (Vi = 7) and DO (Vi = 14.6 mg/l)], Vs is the standard permissible value for the nth water quality parameter (table 3).Unit weight (Wn) was determined by the formula: Wn = k/Vs; k is the constant of proportionality and was calculated following the equation: $k = [1/\sum 1/Vs = 1, 2, ..., n]$ (table 3).

Statistical Analysis

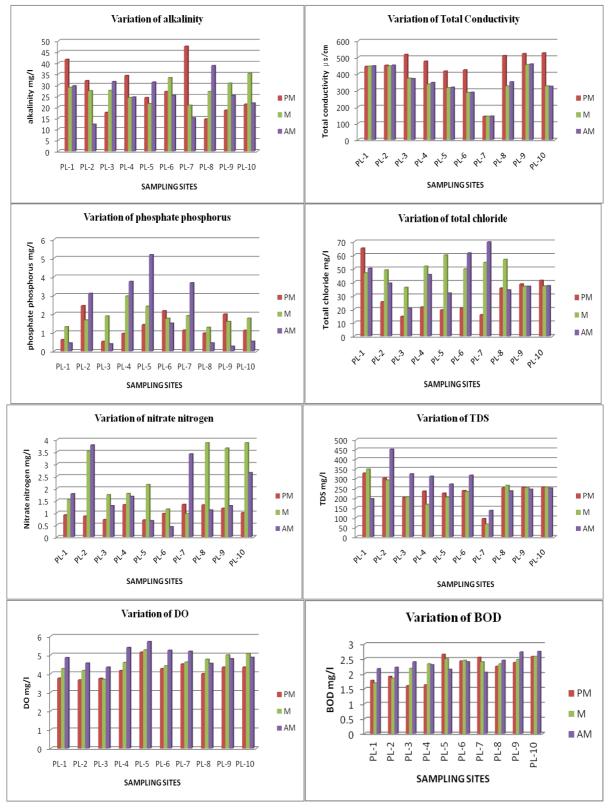
Minitab statistical package was utilized for the statistical analysis of water analysis results. Correlation analysis was done by Microsoft excel and PCA was performed to explain the observed variance in the data. Also PCA attempts to explain the correlation between the observations in terms of the underlying factors, which are not directly observable [13]. Principal component analysis (PCA) is used as an important multivariate statistical tools to reduce large number of data sets in lot of excellent studies [14, 15, 16, 17, 18, 19, 20, 21].

3. RESULTS AND DISCUSSION


The statistical summary of the selected water quality parameters at various sampling sites are presented in Table 2.

Pit	PH	TH	ТС	ALK	CHL	PHOS	NITR	TDS	DO	BOD
lakes							0			
PL 1	8.09±	186.1±	448.50	33.33±	53.98±	0.78±	1.40±	290.4±	4.28±	1.88±
	0.61	70.83	±1.92	8.10	8.27	0.39	0.38	69.18	0.58	0.26
PL 2	8.61±	261.1±	449.7±	23.80±	37.80±	2.39±	2.72±	348±	4.12±	1.99±
	0.58	38.31	2.63	8.95	11.02	0.65	1.39	75.85	0.41	0.22
PL 3	7.87±	288.5±	419.6±	25.5±	23.65±	0.92±	1.23±	243.6±	3.91±	2.06±
	0.72	44.86	72.09	6.37	9.48	0.71	0.43	59.01	0.33	0.37
PL 4	7.98±	214±	386.2±	22.67±	39.55±	2.54±	1.58±	237.2±	4.7±	2.08±
	0.68	26.70		5.29	13.63		0.21		0.55	0.37
PL 5	7.72±	176.08			35.35±					2.43±0
	0.92	±30.42	±49.03	5.14	15.45	.67	.73	±29.95	.29	.29
PL 6	7.78±	27.5±	332±	28.5±	43.99±	1.80±0	0.84±0	262.25	4.63±0	2.43±0
	0.62	6.14	67.24	4.72	17.86	.28	.33	±40.15	.48	.09
PL 7	7.28±	250.08	141.5±	27.75±	46.64±	2.23±1	1.89±1	197.87	4.75±0	2.33±0
	0.53	±25.22	0.99	15.12	23.72	.12	.13	±175.7	.33	.26
								3		
PL 8	7.91±	173.33	395.33	26.75±	42.09±	0.88±0	2.09±1	250.67	4.42±0	2.34±0
	0.40	±103.0	±85.44	10.56	10.87	.37	.31	±12.41	.36	.14
		5								
PL 9	8.15±	194.17	478.08	24.83±	37.36±	0.97±0	2.03±1	250.51	4.69±0	2.53±0
	0.27	±75.33	±32.17	5.97	1.34	.58	.19	±4.87	.31	.19
PL 10	7.89±	184.5±	391.58	28.08±	38.43±	1.13±0	2.5±2.	253.83	4.74±0	2.63±0
1 1 10	0.25	96.86		6.29	2.15	.54	2.5±2.	±2.79		.18
	0.20	20.00	_//.11	5.27	2.10			,,		.10

Table 2: Statistical representation of water quality parameters of different pit lake


TH- total hardness, TC- total conductivity, ALK- alkalinity, CHL- Chloride, PHOS- phosphate phosphorous, NITRO- nitrate nitrogen, TDS- Total dissolved solids, DO- dissolved oxygen, BOD- biological oxygen demand. The variation of different water quality parameters at different pit-lakes during the study period are

Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications represented in figure 2. The average pH values of different pit-lakes are ranges from 7.28-8.61 which is near to the BIS prescribed limits. Electrical conductivity is capacity of conducting electric current. Electrical conductivity is a directly related with the dissolved salts present in the water [22]. Digital conductivity meter is used to measure electrical conductivity and the results were expressed in microsiemen/centimeter. Observed EC values for the water samples of selected 10 pit-lakes are ranged between 141.58 to 478.08 µS/cm. TDS directly measure total dissolved particles in a water and BIS desirable limit is 500 mg/l. The concentration of TDS for the water samples ranged from 197.87 mg/l to 348 mg/l which were also match the range of desirable limit. Calcium and magnesium are the principal cations which brings hardness. Basically the total hardness of water is dependent on the amount of calcium and magnesium ions and shows proportion relation [23, 24] Total hardness of the sampling sites is ranges from 27.5 to 288.5 mg/l. Chloride is considered as an important WQ parameter. The chloride and nitrate nitrogen content in water comes mainly from natural sources, industrial effluents and sewage systems [25]. The average chloride concentration of the water samples are between 23.65 to 53.98 mg/l which is within the desirable limit of BIS (250 mg/l). Nitrate-nitrogen content of different pit-lakes was ranges from 0.84 to 2.72 mg/l. The amount of dissolved oxygen in water is dependent on different chemical and microbiological processes. Besides salinity and temperature is also potential factor [26]. Optimum range of DO for good water qualities is within of 4–6 mg/l and DO concentration below this optimum range is expected to be polluted. The mean values of DO of the water samples are ranges from 3.91 to 5.36 mg/l. Biochemical oxygen demand (BOD) represent the amount of oxygen needed for aerobic microorganisms to degrade different organics present in a water [27] and hence BOD acts as an indicator of organic pollution where higher values of BOD indicates higher levels of organic pollution [28]. Present analysis revealed the mean BOD values ranges from 1.88 to 2.63 mg/l. Alkalinity is used to measure the capacity of water to neutralize acid [29]. The mean concentration of alkalinity in water samples of selected pit-lakes are ranges from 22.67 to 33.33 mg/l which is under the BIS prescribed limit of 120 mg/l. The concentrations of phosphate phosphorous in different pit-lakes are ranges from 0.78 to 2.99 mg/l.

www.rjlbpcs.com

Figure 2: Variation of physicochemical parameters in the study sites.

Season wise observed values of different physicochemical parameters and the corresponding WQI values are presented in tabular form (table 4 to 13). Table 3 represents the standard value of drinking water quality and the unit weights assigned to each parameter used for calculating the WQI. Maximum weight, i.e., 0.641 and 0.128 are assigned to phosphate, DO and BOD respectively, indicates their importance and impact on overall water quality index. Our study showed that most of © 2019 Life Science Informatics Publication All rights reserved

Peer review under responsibility of Life Science Informatics Publications 2019 May – June RJLBPCS 5(3) Page No.538 Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications the sampling sites are fall under very poor and unsuitable water category. The WQI analysis unveiled the fact that pit-lake 5 is the most polluted sites in all seasons (table 15 and figure 3).

Table 3: Relative weights (Wn) and standard value (Vs) of the parameters used for WQI

	detern	nination	
Sl.	Parameters	Standard	Unit weight
No.	i aranteters	value(Vs)	(Wn)
1	рН	6.5-8.5	0.075
2	ТН	300	0.0021
3	ТС	300	0.0021
4	ALK	120	0.0053
5	TDS	500	0.0012
6	DO	5	0.1282
7	BOD	5	0.1282
8	CHL	250	0.0026
9	PHOS	1.00	0.641
10	NITRO	45	0.0142

Table 4: Calculation of WQI at PL-1

Parameter		P	М			N	4		АМ				
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	
РН	8.83	122	0.075	9.15	7.95	63.3	0.075	4.748	7.47	31.3	0.075	2.348	
ТН	266.33	88.8	0.002	0.178	97.37	32.5	0.002	0.065	194.67	64.9	0.002	0.129	
тс	444.33	148.1	0.002	0.296	445.14	148.4	0.002	0.297	448	149.3	0.002	0.0299	
ALK	41.56	34.6	0.005	0.173	28.89	24.1	0.005	0.121	29.55	24.6	0.005	0.123	
CL	65.08	26	0.003	0.078	46.69	18.7	0.003	0.056	50.16	20.1	0.003	0.060	
PO4	0.61	61	0.641	39.10	1.30	130	0.641	83.33	0.43	43	0.641	27.563	
N2	0.90	2	0.014	0.028	1.53	3.4	0.014	0.048	1.77	3.9	0.014	0.055	
DO	3.74	113.1	0.128	14.477	4.25	107.8	0.128	13.798	4.84	101.7	0.128	13.018	
BOD	1.78	35.6	0.128	4.557	1.69	33.8	0.128	13.798	2.17	43.4	0.128	5.555	
TDS	327.67	65.5	0.001	0.066	348.42	69.7	0.001	0.069	195.18	39	0.001	0.039	
\sum WnQn= 68	∑WnQn= 116.33				\sum WnQn= 48.92								
∑Wn=0.999	∑Wn=0.999					∑Wn=0.999				∑Wn=0.999			
(WQI)=∑W	- WQI)= ∑WnQn/ ΣWn= 68.17				(WQI)= Σ WnQn/ Σ Wn= 116.44				(WQI)= $\sum WnQn / \Sigma Wn = 48.96$				

www.rjlbpcs.com

Life Science Informatics Publications

Table 5: Calculation	of WQI at PL-2
----------------------	----------------

Parameter]	PM			I	M		АМ				
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	
РН	8.65	110	0.075	8.25	8.68	112	0.075	8.4	8.51	100.7	0.075	7.553	
ТН	304.5	101.5	0.002	0.203	217.44	72.5	0.002	0.014	261.47	87.2	0.002	0.174	
тс	451	150.3	0.002	0.3006	446.5	148.8	0.002	0.296	451.75	150.6	0.002	0.301	
ALK	31.92	26.6	0.005	0.133	27.34	22.8	0.005	0.114	12.15	10.1	0.005	0.051	
CL	25.32	10.1	0.003	0.030	48.95	19.6	0.003	0.059	39.14	15.7	0.003	0.047	
PO4	2.43	24.3	0.641	15.576	1.66	166	0.641	106.406	3.09	309	0.641	198.069	
N2	0.85	1.9	0.014	0.027	3.53	7.8	0.014	0.109	3.78	8.4	0.014	0.118	
DO	3.65	114.1	0.128	14.605	4.15	108.9	0.128	13.939	4.55	104.7	0.128	13.402	
BOD	1.91	38.2	0.128	4.889	1.85	37	0.128	4.736	2.22	44.4	0.128	5.683	
TDS	302.25	60.5	0.001	0.061	291.25	58.3	0.001	0.058	450.5	90.1	0.001	0.090	
∑WnQn=44	∑WnQn=	=134.13			∑WnQn	=225.49							
∑Wn=0.999	∑Wn=0.999					∑Wn=0.999				∑Wn=0.999			
(WQI)=∑W	$(WQI) = \sum WnQn / \Sigma Wn = 44.11$				(WQI)= $\sum WnQn / \Sigma Wn = 134.26$				(WQI)= $\sum WnQn / \Sigma Wn$ = 225.72				

Table 6: Calculation of WQI at PL-3

Parameter			PM				Μ				AM		
	Vn	Qn	Wn	nWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	
РН	8.76	117.3	0.075	8.7975	7.69	46	0.075	3.45	7.15	10	0.075	0.75	
ТН	276.5	92.2	0.002	0.1844	243	81	0.002	0.162	346	115.3	0.002	0.2306	
тс	517.25	172.4	0.002	0.3448	372.25	124.1	0.002	0.2482	369.5	123.2	0.002	0.2464	
ALK	17.5	14.6	0.005	0.073	27.5	22.9	0.005	0.1145	31.5	26.3	0.005	0.1315	
CL	14.49	5.8	0.003	0.0174	35.97	14.4	0.003	0.0432	20.48	8.2	0.003	0.0246	
PO4	0.51	51	0.641	32.691	1.88	188	0.641	120.508	0.38	38	0.641	24.358	
N2	0.71	1.6	0.014	0.0224	1.73	3.8	0.014	0.0532	1.28	2.8	0.014	0.0392	
DO	3.73	114.1	0.128	14.6048	3.68	113.8	0.128	14.5664	4.33	106.9	0.128	13.6832	
BOD	1.6	32	0.128	4.096	2.18	43.6	0.128	5.5808	2.4	48	0.128	6.144	
TDS	202.25	40.5	0.001	0.0405	205.25	41.1	0.001	0.0411	323.5	64.7	0.001	0.0647	
∑WnQn=60	.87				∑WnQn=144.77				∑WnQn=45.67				
∑Wn=0.999	∑Wn=0.999					∑Wn=0.999				∑Wn=0.999			
(WQI)=∑W	/nQn/ΣW	/n= 60.9	3		(WQI)= $\sum WnQn / \Sigma Wn = 144.91$				$(WQI) = \sum WnQn / \Sigma Wn = 45.72$				

www.rjlbpcs.com

Life Science Informatics Publications

Parameter]	PM				М			1	AM		
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	
РН	8.41	94	0.075	7.05	7.99	66	0.075	4.95	7.53	35.3	0.075	2.6475	
тн	249.25	86	0.002	0.172	193.25	64.4	0.002	0.1288	199.5	66.5	0.002	0.133	
тс	475.5	158.5	0.002	0.317	336.5	112.2	0.002	0.2244	346.75	115.6	0.002	0.2312	
ALK	34.25	28.5	0.005	0.1425	24.25	20.2	0.005	0.101	24.5	20.4	0.005	0.102	
CL	21.48	8.6	0.003	0.0258	51.71	20.7	0.003	0.0621	45.46	22.7	0.003	0.0681	
PO4	0.94	94	0.641	60.254	2.95	295	0.641	189.095	3.73	373	0.641	239.093	
N2	1.32	2.9	0.014	0.0406	1.78	39.6	0.014	0.5544	1.66	3.7	0.014	0.0518	
DO	4.15	108.9	0.128	13.9392	4.58	104.4	0.128	13.3632	5.38	96	0.128	12.288	
BOD	1.63	32.6	0.128	4.1728	2.33	46.6	0.128	5.9648	2.3	46	0.128	5.888	
TDS	234.75	46.9	0.001	0.0469	166.75	33.8	0.001	0.0338	311.25	62.3	0.001	0.0623	
$\sum WnQn = 80$	∑WnQn=214.48				∑WnQn=260.565								
∑Wn=0.999	∑Wn=0.999					∑Wn=0.999				∑Wn=0.999			
(WQI)=∑W	$(WQI) = \sum WnQn / \Sigma Wn = 86.25$					(WQI)= $\sum WnQn / \Sigma Wn$ = 214.69				(WQI)= $\sum WnQn / \Sigma Wn = 260.83$			

Table 7: Calculation of WQI at PL-4

Table 8: Calculation of WQI at PL-5

Parameter		1	PM				Μ		AM				
Taranicui							141						
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	
РН	8.89	106	0.075	7.95	7.43	28.7	0.075	2.1525	6.84	10.7	0.075	0.8025	
ТН	196	65.3	0.002	0.1306	197.25	65.6	0.002	0.1312	165	55	0.002	0.11	
тс	415.75	138.6	0.002	0.2772	314.75	104.9	0.002	0.2098	317.75	105.9	0.002	0.2118	
ALK	24.25	20.2	0.005	0.101	21.5	17.9	0.005	0.0895	31.25	26	0.005	0.13	
CL	19.29	7.7	0.003	0.0231	59.97	23.9	0.003	0.0717	31.79	12.7	0.003	0.0381	
PO4	1.41	141	0.641	90.381	2.4	240	0.641	153.84	5.17	517	0.641	331.397	
N2	0.69	105	0.014	1.47	2.15	4.8	0.014	0.0672	0.66	1.5	0.014	0.021	
DO	5.13	98.6	0.128	12.6208	5.25	97.4	0.128	12.4672	5.7	92.7	0.128	11.8656	
BOD	2.65	53	0.128	6.784	2.5	50	0.128	6.4	2.15	43	0.128	5.504	
TDS	224.5	44.9	0.001	0.0449	203.25	40.7	0.001	0.0407	271.15	54.4	0.001	0.0544	
∑WnQn=11	9.78				∑WnQn	= 175.47	,		∑WnQn	= 350.13	;		
∑Wn=0.999	∑Wn=0.999					∑Wn=0.999				∑Wn=0.999			
(WQI)=∑W	$(WQI) = \sum WnQn / \Sigma Wn = 191.97$					(WQI)= \sum WnQn/ Σ Wn= 175.64				$(WQI) = \sum WnQn / \Sigma Wn = 350.48$			

www.rjlbpcs.com

Life Science Informatics Publications

Parameter			PM				Μ		AM					
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn		
РН	8.39	92.7	0.075	6.9525	7.26	17.3	0.075	1.2975	7.69	46	0.075	3.45		
ТН	29	9.7	0.002	0.0194	31.5	10.5	0.002	0.021	22	7.3	0.002	0.0146		
тс	423	141	0.002	0.282	285.75	95.3	0.002	0.1906	287.25	95.8	0.002	0.1916		
ALK	27	22.5	0.005	0.1125	33.25	27.7	0.005	0.1385	25.25	21.0	0.005	0.105		
CL	20.79	8.3	0.003	0.0249	49.73	19.9	0.003	0.0597	61.46	24.6	0.003	0.0738		
PO4	2.16	216	0.641	138.456	1.75	175	0.641	112.175	1.49	149	0.641	95.509		
N2	0.96	2.1	0.014	0.0294	1.14	20.5	0.014	0.287	0.41	0.9	0.014	0.0126		
DO	4.25	107.8	0.128	13.7984	4.4	106.3	0.128	13.6064	5.23	97.6	0.128	12.4928		
BOD	2.43	48.6	0.128	6.2208	2.45	49	0.128	6.272	2.4	48	0.128	6.144		
TDS	237.5	47.5	0.001	0.0475	232.75	46.5	0.001	0.0465	316.5	63.3	0.001	0.0633		
\sum WnQn=10	∑WnQn= 165.94						∑WnQn=134.09				∑WnQn=118.056			
∑Wn=0.999	∑Wn=0.999					∑Wn=0.999				∑Wn=0.999				
(WQI)=∑W	nQn/ΣV	Wn= 166	5.11		$(WQI) = \sum WnQn / \Sigma Wn = 134.22$				(WQI)= $\sum WnQn / \Sigma Wn$ = 118.17					

Table 9: Calculation of WQI at PL-6

Table 10: Calculation of WQI at PL-7

Parameter			PM			N	M				AM		
						1							
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	
РН	7.08	5.3	0.075	0.3975	7.97	64.7	0.075	4.8525	6.79	14	0.075	1.05	
ТН	267	89	0.002	0.178	266.5	88.8	0.002	0.1776	216.75	72.3	0.002	0.1446	
тс	141	47	0.002	0.094	141.25	47.1	0.002	0.0942	142.5	47.5	0.002	0.095	
ALK	47.5	39.6	0.005	0.198	20.75	17.3	0.005	0.0865	15	12.5	0.005	0.0625	
CL	15.74	6.3	0.003	0.0189	54.49	21.8	0.003	0.0654	69.69	27.9	0.003	0.0837	
PO4	1.12	112	0.641	71.792	1.90	190	0.641	121.79	3.66	366	0.641	234.606	
N2	1.33	2.9	0.014	0.0406	0.95	2.1	0.014	0.0294	3.41	7.6	0.014	0.1064	
DO	4.5	105.2	0.128	13.4656	4.6	104.2	0.128	13.3376	5.18	98.1	0.128	12.5568	
BOD	2.55	51	0.128	6.528	2.4	48	0.128	6.144	2.05	41	0.128	5.248	
TDS	93.25	18.7	0.001	0.0187	65.11	13.0	0.001	0.013	135.25	27.1	0.001	0.0271	
∑WnQn=92	.73				∑WnQn=146.59				∑WnQn	=253.98			
∑Wn=0.999	∑W n=0.999					∑Wn=0.999				∑Wn=0.999			
(WQI)=∑W	$(WQI) = \sum WnQn / \sum Wn = 92.82$					(WQI)= $\sum WnQn / \Sigma Wn = 146.74$				$(WQI) = \sum WnQn / \Sigma Wn = 254.23$			

www.rjlbpcs.com

Life Science Informatics Publications

Parameter			PM				М		AM					
	Vn	Qn	Wn	$Q_n W_n$	Vn	Qn	Wn	$Q_n W_n$	Vn	Qn	Wn	$Q_n W_n$		
РН	8.13	75.3	0.075	5.6475	8.06	70.7	0.075	5.3025	7.53	35.3	0.075	2.6475		
ТН	312.5	104.2	0.002	0.2084	109.5	36.5	0.002	0.073	98	32.7	0.002	0.0654		
тс	510	170	0.002	0.34	325.25	108.4	0.002	0.2168	350.75	116.9	0.002	0.2338		
ALK	14.5	12.1	0.005	0.0605	27	22.5	0.005	0.1125	38.75	32.3	0.005	0.1615		
CL	35.48	14.2	0.003	0.0426	56.74	22.7	0.003	0.0681	34.07	13.6	0.003	0.0408		
PO4	0.96	96	0.641	61.536	1.27	127	0.641	81.407	0.43	4.3	0.641	2.7563		
N2	1.31	2.9	0.014	0.0406	3.87	8.6	0.014	0.1204	1.1	2.4	0.014	0.0336		
DO	3.98	110.6	0.128	14.1568	4.75	102.6	0.128	13.1328	4.53	104.9	0.128	13.4272		
BOD	2.25	45	0.128	5.76	2.33	46.6	0.128	5.9648	2.45	49	0.128	6.272		
TDS	251.75	50.4	0.001	0.0504	264.5	52.9	0.001	0.0529	235.75	47.2	0.001	0.0472		
∑WnQn	=87.84				∑WnQn=106.45				\sum WnQn=25.69					
∑Wn=0.	∑Wn=0.999						∑Wn=0.999				∑Wn=0.999			
(WQI)=∑	WnQn/	ΣWn=	87.93		$(WQI) = \sum WnQn / \Sigma Wn = 106.55$				$(WQI) = \sum WnQn / \Sigma Wn = 25.72$					

Table 11: Calculation of WQI at PL-8

Table 12: Calculation of WQI at PL-9

Parameter	РМ						Μ		АМ			
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn
РН	8.37	91.3	0.075	6.8475	8.23	82	0.075	6.15	7.85	56.7	0.075	4.2525
ТН	288.75	96.3	0.002	0.1926	179.5	59.8	0.002	0.1196	114.25	38.1	0.002	0.0762
ТС	521.5	173.8	0.002	0.3476	454.5	151.5	0.002	0.303	458.25	152.8	0.002	0.3056
ALK	18.5	15.4	0.005	0.077	30.75	25.6	0.005	0.128	25.25	29.4	0.005	0.147
CL	38.49	15.4	0.003	0.0462	36.75	14.7	0.003	0.0441	36.83	14.7	0.003	0.0441
PO4	1.98	118	0.641	75.638	1.58	158	0.641	101.278	0.25	25	0.641	16.025
N2	1.17	2.6	0.014	0.0364	3.65	8.1	0.014	0.1134	1.28	2.8	0.014	0.0392
DO	4.33	106.9	0.128	13.6832	4.98	100.2	0.128	12.8256	4.78	102.3	0.128	13.0944
BOD	2.38	47.6	0.128	6.0928	2.48	49.6	0.128	6.3488	2.73	54.6	0.128	6.9888
TDS	254.75	50.9	0.001	0.0509	252.5	50.5	0.001	0.0505	244.25	48.9	0.001	0.0489
∑WnQn=103.01				∑WnQt	n=127.36	5		∑WnQn=41.02				
∑Wn=0.999				∑Wn=0.999				∑Wn=0.999				
(WQI)= \sum WnQn/ Σ Wn= 103.11				$(WQI) = \sum WnQn / \Sigma Wn = 127.49 \qquad (WQI) = \sum WnQn / \Sigma Wn = 4$					$\Sigma W n = 2$	1.06		

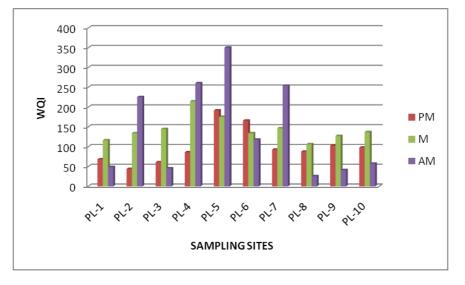
www.rjlbpcs.com

Life Science Informatics Publications

Parameter		I	PM				Μ		АМ			
	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn	Vn	Qn	Wn	QnWn
РН	8.16	77.3	0.075	5.7975	7.84	55.3	0.075	4.1475	7.68	45.3	0.075	3.3975
ТН	315.5	105.2	0.002	0.2104	445	38.3	0.002	0.0766	123	41	0.002	0.082
тс	525.75	175.3	0.002	0.3506	325.5	108.5	0.002	0.217	323.5	107.8	0.002	0.2156
ALK	21.25	18.1	0.005	0.0905	35.25	29.4	0.005	0.147	21.75	18.1	0.005	0.0905
CL	41.22	16.5	0.003	0.0495	37.01	14.8	0.003	0.0444	37.22	14.9	0.003	0.0447
PO4	1.11	111	0.641	71.151	1.76	176	0.641	112.816	0.52	52	0.641	33.332
N2	0.99	2.2	0.014	0.0308	3.87	8.6	0.014	0.1204	2.64	5.9	0.014	0.0826
DO	4.33	106.9	0.128	13.6832	5.05	99.5	0.128	12.736	4.85	101.6	0.128	13.0048
BOD	2.58	51.6	0.128	6.6048	2.58	51.6	0.128	6.6048	2.75	55	0.128	7.04
TDS	255.75	51.2	0.001	0.0512	255.5	51.1	0.001	0.0511	250.25	50.1	0.001	0.0501
	∑WnQn=98.02			ΣWn Qn=136.96				\sum WnQn=57.34				
	∑Wn=0.999				∑Wn=0.999				∑Wn=0.999			
	(WQI)=	=∑WnQ	n/ $\Sigma Wn=$	98.12	(WQ	I)=∑Wn	lQn/∑Wı	n= 137.09	(WQI)= $\sum WnQn / \Sigma Wn = 57.39$			

Table 13: Calculation of WQI at PL-10

Table 14: WQI range and status of the water sample [10]


WQI	Water quality status	Possible usage
0-25	Excellent	Drinking, irrigation and industrial
26-50	Good	Drinking, irrigation and industrial
51-75	Poor	Irrigation and industrial
76-100	Very poor	Irrigation
Above 100	Unsuitable for fish culture and drinking	Treatment is needed before any use

www.rjlbpcs.com

Life Science Informatics Publications

Sampling	I	PM		М	AM		
station	WQI	WQS	WQI	WQI WQS		WQS	
PL-1	68.17	POOR	116.44	UNSUITABLE	48.96	GOOD	
PL-2	44.11	GOOD	134.26	UNSUITABLE	225.72	UNSUITABLE	
PL-3	60.93	POOR	144.91	UNSUITABLE	45.72	GOOD	
PL-4	86.25	VERY POOR	214.69	UNSUITABLE	260.83	UNSUITABLE	
PL-5	191.97	UNSUITABLE	175.64	UNSUITABLE	350.48	UNSUITABLE	
PL-6	166.11	UNSUITABLE	134.22	UNSUITABLE	118.17	UNSUITABLE	
PL-7	92.82	VERY POOR	146.74	UNSUITABLE	254.23	UNSUITABLE	
PL-8	87.84	VERY POOR	106.45	UNSUITABLE	25.72	GOOD	
PL-9	103.11	UNSUITABLE	127.49	UNSUITABLE	41.06	GOOD	
PL-10	98.12	VERY POOR	137.09	UNSUITABLE	57.39	POOR	

Figure 3: WQI status in different study sites.

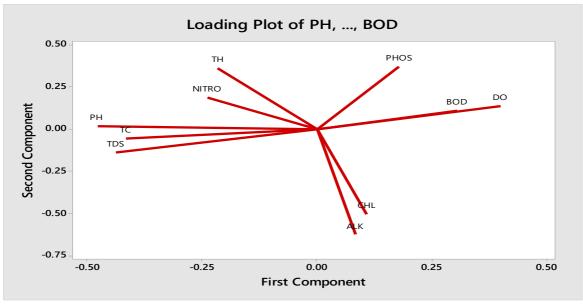
Correlation coefficient analysis among the chemical parameters of selected ten pit-lakes shows significant relationships among the variables (Table 16). pH shows positive correlation with TC and TDS. TC is also positively correlated with TDS. Positive correlation is also exhibited between ALK and CHL and DO with BOD.

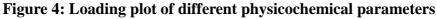
www.rjlbpcs.com

Life Science Informatics Publications

	ph	Total hardness	Total conductivity	Alkalinity	Chloride	phosphate	nitrogen	TDS	DO	BOD
ph	1									
Total hardness	0.151448	1								
Total conductiv	0.847968	0.045821844	1							
Alkalinity	-0.24544	-0.352880518	-0.114182077	1						
Chloride	-0.1161	-0.4041447	-0.255143024	0.666958	1					
phosphate	-0.13601	0.017876631	-0.429091878	-0.47739	-0.05149	1				
nitrogen	0.44323	0.440621512	0.176615396	-0.25534	0.008811	-0.097058825	1			
TDS	0.897313	0.023314676	0.64261585	0.030555	0.085588	-0.081828355	0.376358	1		
DO	-0.46809	-0.387456421	-0.392086978	-0.07954	0.157446	0.546961419	-0.18154	-0.51386	1	
BOD	-0.39808	-0.437279752	-0.241690427	-0.08218	-0.11912	-0.015252719	0.103088	-0.46592	0.638127	

 Table 16: Correlation matrix of water quality parameters of studied pit-lakes


Principal component Principal component analysis was performed to extract the most crucial factors regulating the water quality. The first principal component accounts for 36.10% of total variance. The variables that correlate the most with the first principal component (PC1) are DO (0.339) and BOD (0.305) (table 17). These two variables show positive correlation with the first principal component. The first five principal components describe 94.20% of the variation in the data. Therefore these components are good contributor of the water hydrology. Figure 4 highlights the loading plot of first two principal components. DO and BOD has positive loadings on first component whereas PH, TC and TDS have negative loadings on first components. ALK and CHL have large negative loadings on second component


Table 17: Loadings of 10 experimental variables on principal components for selected pitlakes Eigen analysis of the Correlation Matrix

Eigenvalue	3.6100	2.1336	1.3833	1.2159	1.0734	0.3490	0.2154	0.0171	0.0023	0.0000
Proportion	0.361	0.213	0.138	0.122	0.107	0.035	0.022	0.002	0.000	0.000
Cumulative	0.361	0.574	0.713	0.834	0.942	0.977	0.998	1.000	1.000	1.000

Eigenvectors

Variable	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
РН	-0.479	0.017	0.326	-0.114	-0.055	0.086	-0.078	0.373	0.341	-0.616
тс	-0.415	-0.056	0.303	0.251	-0.263	0.509	-0.095	-0.257	0.178	0.484
тн	-0.217	0.360	-0.520	-0.025	0.296	0.450	0.225	0.430	-0.023	0.163
ALK	0.084	-0.626	-0.136	0.025	0.123	0.184	0.627	-0.135	0.327	-0.125
CHL	0.108	-0.504	0.082	-0.419	0.347	0.165	-0.493	0.297	0.021	0.269
PHOS	0.179	0.370	0.146	-0.662	-0.133	-0.059	0.221	-0.110	0.480	0.245
NITRO	-0.239	0.186	0.170	0.015	0.792	-0.084	-0.024	-0.487	0.056	-0.065
TDS	-0.437	-0.138	0.271	-0.282	-0.012	-0.284	0.436	0.164	-0.528	0.244
DO	0.399	0.136	0.411	-0.136	0.038	0.590	0.149	-0.064	-0.425	-0.278
BOD	0.305	0.111	0.462	0.460	0.242	-0.173	0.192	0.472	0.225	0.266

4. CONCLUSION

Water quality monitoring is an important criterion to match the demand and supply of water for different purposes. Supply of sufficient freshwater to mitigate the needs of society is considered to be integral part of sustainable environmental management [30, 31]. For this purpose, various indices regarding water quality have been used to transform different water quality parameters into a single value which is simple and easy to interprets water quality index is generated by combination of different physicochemical parameters [32, 33]. The present findings stated that there is a significant difference in the physicochemical parameters of pit lake water bodies among different season and © 2019 Life Science Informatics Publication All rights reserved

Peer review under responsibility of Life Science Informatics Publications 2019 May - June RJLBPCS 5(3) Page No.547

Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications over all study indicate that the health condition of most pit lakes are significantly inferior. Based on the WQI, all the pit lakes are unsuitable for use in the monsoon season. The outcomes of this investigation might contribute in management policies of these huge water bodies. This study can also be useful to evolve strategies for an ecological restoration, conservation and management.

ACKNOWLEDGEMENT

The authors' thanks are due to the Department of Botany, Durgapur Govt. College and the Depart of Zoology, Raghunathpur College, West Bengal, India to assist during our entire study period.

CONFLICT OF INTEREST

The authors declare no conflict of interest

REFERENCES

- 1. Kumar A, and Dua A. Water quality index for assessment of water quality of river Ravi at Madhopur,India. Glo J Env. Sci. 2009; 8(1): 49-57.
- Singh PK, Tiwari AK, Mahato MK. Qualitative Assessment of Surface Water of West Bokaro Coalfield, Jharkhand by Using Water Quality Index Method. Int. J. of Geo. Res. 2013; 5: 2351-2356.
- Kannel PR, Lee S, Lee YS, Kanel SR, Khan SP. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007; 132: 93–110.
- Lumb A, Halliwell D, Sharma T. Application of CCME Water QualityIndex to monitor water quality: A case of the Mackenzie River Basin, Canada. Environ. Monit.Assess. 2006; 113: 411– 429.
- 5. Sharifi M. Assessment of Surface Water Quality by an Index System in Anzali Basin. In The Hydrological Basis for Water Resources Management. IAHS. 1990;197: 163-171.
- Horton RK. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965; 37(3): 300–306.
- Debels P, Figueroa R, Urrutia R, Barra R, Niell X. Evaluation of water quality in the Chilla'n River (Central Chile) using physicochemical parameters and a modified Water Quality Index. Environ. Monit. Assess. 2005; 110: 301–322.
- 8. Wu ZS, Wang XL, Chen YW, Cai YJ, Deng JC. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018; 612: 914–922.
- 9. Wang XP, Zhang F, Ding JL. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 2017; 7(1): 1258.
- Brown RM, McClelland NI, Deininger RA, O'Connor MF. A water quality index—crashing the physiological barrier. Indic Environ Qual. 1972; 1:173–182.
- Bhargava DS. Use of water quality index for river classification and zoning of Ganga River. Environ. Pollut. Ser. B. England. 1983; 6 (1): 51–67.

- Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications
 12. APHA. Standard methods for examination of water and wastewater. 21st edn. American Public Health Association, Washington. 2005.
- 13. Yu S, Shang J, Zhao J, Guo H. Factor analysis and dynamics of water quality of the Songhua river, Northeast China. Water, Air, and Soil Pollut. 2003; 144(1–4): 159–169.
- 14. Gholami S, Srikantaswamy S. Statistical multivariate analysis in the assessment of river water quality in the vicinity of KRS Dam, Karnataka, India. Nat Resour Res. 2009; 18: 235–247.
- 15. Noori R, Abdoli MA, Jalili Ghazizade M, R Samieifard. Comparison of neural network and principal component-regression analysis to predict the solid waste generation in Tehran, Iran. J Public Health. 2009; 38: 74–84.
- Noori R, Khakpour A, Omidvar B, Farokhnia A. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Syst Appl. 2010; 37: 5856–5862.
- Fan X, Cui B, Zhao H, Zhang Z, Zhang H. Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environ Sci. 2010; 2: 1220–1234.
- Massoud MA. Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environ Monit Assess. 2012; 184: 4151–4160.
- Potential ecological risk assessment, enrichment, geoaccumulation, and source identification of metals in the surface sediments of Choghakhor Wetland, Iran. Environ Earth Sci. 2017; 76(11): 398.
- 20. Lin Y, Han P, Huang Y, Yuan GL, Guo X, Li J. Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. J Geochem Explor. 2017; 173: 110–118.
- Misaghi F, Delgosha F, Razzaghmanesh M, Myers B. Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River. Sci Total Environ. 2017; 589: 107–116.
- 22. Harilal CC, Hashim A, Arun PR, Baji S. Hydrogeochemistry of two rivers of kerala with special reference to drinking water quality. J Ecology. 2004; 10(2): 187-192.
- 23. Pawar SK, Pulle JS. Studies on physico-chemical parameters in Pethwadaj dam, Nanded District in Maharashtra, India. J Aqua Bio. 2005; 20: 123-128.
- 24. Salve BS, Hiware CJ. Studies on water quality of Wanparakalpa Reservoir, Nagapur, near Parli Vaijnath, District Beed, and Marathwada region. J Aqua Bio. 2006; 21: 113-117.
- 25. Solanki HA. Status of soils and water reservoirs near industrial areas of Baroda: pollution and soil water chemistry. Germany. Lap Lambert Academic Publishing, 2012.
- Yang HJ, Shen ZM, Zhang JP, Wang WH. Water quality characteristics along the course of the Huangpu River (China). J Environ Sci. 2007; 19: 1193–1198.

- Mondal & Palit RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications
 27. Solanki HA, Pandit BR. Trophic status of lentic waters of ponds water of Vadodara, Gujarat, India. Int J Bios Rep. 2006; 4: 191-198.
- 28. Patel SG, Singh DD, Harshey DK. Pamitae (Jabalpur) sewage polluted water body, as evidenced by chemical and biological indicators of pollution. J Environ Biol. 1983; 4: 437-449.
- 29. Wetzel RG. Limnology. New York: CRS College Publishing. Philadelphia, 1983.
- Bollinger JE, Steinberg LJ, Harrison MJ, Crews JP. Comparative analysis of nutrient data in the lower Mississippi River. Water Res. 1999; 33: 2627–2632.
- 31. Sánchez E, Colmenarejo MF, Vincente J, Rubio A, Garcia MG, Travieso L, Borja R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol Indic. 2007; 7: 315–328.
- 32. Hoseinzadeh E, Khorsandi H, Wei C, Alipour M. Evaluation of Aydughmush river water quality using the national sanitation foundation water quality index (NSFWQI), river pollution index (RPI), and forestry water quality index (FWQI). Desalin Water Treat. 2015; 54(11): 2994–3002.
- 33. Barakat A, Meddah R, Afdali M, Touhami F. Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Phys Chem Earth, 2018; 104: 39–46.