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ABSTRACT: Pancreatic cancer remains a formidable challenge due to late diagnosis and limited 

treatment options. This study utilized bioinformatic tools to identify potential therapeutic candidates 

from natural sources. We analyzed five gene expression datasets from GEO2R to identify 

differentially expressed genes (DEGs). A total of 249 commonly deregulated genes were identified, 

and subsequent network analysis highlighted EGF and FOXO3 as key hub genes. EGF promotes 

tumor growth, while FOXO3 regulates cell cycle arrest and apoptosis. To identify natural 

modulators of these targets, we curated a compound library from PubChem. In silico screening using 

DruLito and Osiris evaluated the drug-likeness and potential toxicity of these compounds. Finally, 

molecular docking simulations assessed the binding affinity of 15 shortlisted compounds with EGF 

and FOXO3. Pheophorbide A and curcumin emerged as promising candidates, demonstrating 

binding affinities of -6.5 kcal/mol and -6.9 kcal/mol for EGF and FOXO3, respectively. These 

findings suggest that targeting these critical regulators with natural products could provide a novel 

therapeutic strategy for pancreatic cancer by disrupting cancer cell proliferation and survival 

mechanisms. 
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1. INTRODUCTION 

Pancreatic cancer, with one of the highest mortality rates among all malignancies, is the seventh 

leading cause of global cancer-related deaths [1]. According to GLOBOCAN 2020, pancreatic 

cancer is the 12th most common cancer (2.6% of all cancers) and is the 7th leading cause of global 

cancer deaths at 4.7% [2]. Rising mortality rates could make this the second leading cause of cancer 

deaths by 2030 [3]. This malignancy often presents minimal to no symptoms until reaching an 

advanced stage [4]. Clinically, pancreatic cancer refers to a malignant tumor originating from the 

epithelial cells of the pancreatic ductal glands, commonly known as adenocarcinoma [5]. Pancreatic 

ductal adenocarcinoma (PDAC) comprises over 90% of pancreatic cancer cases [6]. It is challenging 

to treat because it often presents at a late, inoperable stage and exhibits significant resistance to both 

cytotoxic and targeted molecular therapies [7]. In 2020, the 5-year survival rate for pancreatic cancer 

rose to 10%, up from 5.26% in 2000 [8]. Surgical resection is possible for less than 20% of 

pancreatic cancer patients, offering a potential cure. However, median survival is under 2 years, 

with 80% recurrence. Around 12% survive 5 years, depending on cancer stage, grade, and tumor 

factors [9, 10]. Currently, pancreatic cancer remains a challenge, with prognosis showing minimal 

improvement over the past 20 years [11]. Gemcitabine stands as the primary chemotherapeutic agent 

in treating advanced pancreatic cancer [12,13,14]. Yet, conventional chemotherapy and radiation 

have not improved five-year survival rates [15,16]. Research indicates that FOLFIRINOX improves 

survival rates in patients, but it is accompanied by increased treatment-related toxicity [17]. Despite 

effective precision therapies for other cancers like breast and ovarian, PDAC has limited options, 

with erlotinib as the only approved agent offering minimal survival benefit [18,19]. Despite 

chemotherapy advances, further understanding of PDAC’s molecular mechanisms and identification 

of new therapeutic targets is urgently needed to improve patient outcomes. Identifying potential 

targets for pancreatic cancer treatment involves studying genes and pathways linked to patient 

prognosis, essential for understanding PDAC's aggressiveness [9]. In our studymicroarray gene 

expression analysis was performed to pinpoint genes or gene signatures correlated with pancreatic 

cancer [20,21,22]. Using bioinformatic approaches and high-throughput genomic technologies like 

microarray data, we analyzed PDAC and normal pancreatic tissues to identify key genes and 

pathways, revealing hub genes like EGF and FOXO3 critical in PDAC progression and resistance. 

EGFR inhibitors have had limited success in PDAC clinical trials, except for erlotinib and 

nimotuzumab, highlighting resistance mechanisms and the need for alternative therapies. 

Combining them with multi-targeted drugs may offer better outcomes [23]. In pancreatic cancer, the 

PI3K/Akt pathway remains persistently activated [24,25,26]. A promising anti-cancer drug design 

strategy involves targeting FOXO3a through the PI3K-PKB pathway and influencing its co-

activators or corepressors to regulate its function in cancer cells [27]. The application of precision 

oncology with the exploration of natural compounds as drug candidates is anticipated to improve 
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PDAC treatment efficacy and reduce toxicity. Using bioinformatics and gene expression data, we 

aim to identify natural compounds targeting key proteins, potentially disrupting cancer progression. 

This research highlights the significant potential of natural compounds in cancer therapy and the 

crucial role of bioinformatics in accelerating drug discovery.  

2. MATERIALS AND METHODS 

2.1. Data Acquisition  

Gene expression profiles for pancreatic cancer were obtained from the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) using the keyword “Pancreatic Cancer.” The 

results were filtered by selecting “Datasets,” “Homo sapiens,” and “Expression Profiling by Array” 

as filters. This search yielded 18 datasets, of which five gene expression microarray datasets—

GSE16515, GSE28735, GSE18670, GSE57728, and GSE19650—were selected for differential 

expression gene (DEG) analysis. 

Case 1 (GSE16515) comprised 36 tumor samples and 16 normal samples, totaling 52 samples. Case 

2 (GSE28735) contained 45 matching pairs of pancreatic tumor and adjacent non-tumor tissues from 

45 patients with pancreatic ductal adenocarcinoma (PDAC), totaling 90 samples. Case 3 (GSE18670) 

compared circulating tumor cells (CTCs) with hematological cells (G), original tumor (T), and non-

tumor pancreatic control tissue (P). This dataset aimed to develop a gene signature for CTCs and 

assess the survival of patients after surgical resection for pancreatic cancer. Case 4 (GSE57728) 

demonstrated the effectiveness of the CREB-binding protein inhibitor ICG-001 in suppressing 

pancreatic cancer cell growth by treating AsPC1 cells. Case 5 (GSE19650) focused on multistep 

pancreatic carcinogenesis by comparing gene expression profiles of normal main pancreatic duct 

cells with those from intraductal papillary-mucinous adenoma (IPMA), intraductal papillary-

mucinous carcinoma (IPMC), and intraductal papillary-mucinous neoplasm (IPMN). The study 

observed that as IPMA progresses to IPMC, the host’s immune response shifts from activation to 

tolerance. 

2.2. Identification and Analysis of Differentially Expressed Gene  

Differentially Expressed Genes (DEGs) were acquired using the GEO2R tool available in the GEO 

database [28]. It uses the GEOquery and limma R packages from the Bioconductor project to 

compare different groups of samples in the GEO dataset. Tumor samples were designated as the test 

group and normal samples were the control group. Gene expression profiles of the pancreatic cancer 

(PC) groups were individually compared with those of the normal groups within each dataset. 

Normalization was performed using the RMA algorithm. The Benjamini-Hochberg (BH) [29] 

adjustment was applied to detect DEGs between tumor and normal tissues, and to eliminate the False 

Discovery Rate(FDR). Volcano, mean, and box plots were obtained from the GEO2R analysis. The 

table for differentially expressed genes was downloaded, and genes were sorted with a P-value 

threshold of <0.05.The DEGs were then further analyzed for gene conservancy using the Venn Gene 
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tool (https://bioinformatics.psb.ugent.be/webtools/Venn/), which creates Venn diagrams for 

Bioinformatics and Evolutionary Genomics. This tool combines datasets to identify overlapping 

DEGs or highly significant genes conserved across all cases. 

2.3. Protein-protein interaction (PPI) network construction and Bioinformatic analysis 

of DEGs 

Cytoscape software v3.10.2 was employed for network analysis and visualization of 

candidate DEGs encoding proteins associated with pancreatic cancer. Several Cytoscape 

plugins were used in the analysis: STRINGApp to construct the Protein-Protein Interaction 

(PPI) network for metabolic pathways, CytoHubba to identify the top 10 hub genes or nodes 

within the PPI network using the Degree method, and yFiles Layout Algorithms, particularly 

the Hierarchic Layout for Selected Nodes, to arrange networks into hierarchical layers and 

reorganize sub-graphs for enhanced clarity in visualization. 

2.4. Physicochemical Characterization   

To obtain the protein sequences in FASTA canonical format for the two selected hub genes, EGF 

and FOXO3, the UniProt database (https://www.uniprot.org/) was used. Physicochemical properties, 

including amino acid composition, molecular weight, pI, the total number of negatively and 

positively charged residues, extinction coefficient, instability index, aliphatic index, and the grand 

average of hydropathicity (GRAVY), were computed using the ProtParam tool [30]. 

2.5. Secondary structure prediction and functional characterization  

The secondary structure prediction of the protein was conducted using SOPMA (Self-Optimized 

Prediction Method with Alignment) [31]. Additionally, SOSUI [32] was employed to predict 

transmembrane regions in protein sequences and to classify proteins as either membrane-bound or 

soluble. 

2.6. Homology Modelling, Evaluation and Receptor preparation  

The three-dimensional (3D) structure of the protein was obtained by submitting its amino acid 

sequences to SWISS-MODEL [33], an automated server for protein structure homology modeling. 

This tool automates template selection, alignment, and model building. The quality of the raw 

homology model was initially evaluated using the Procheck server. A Ramachandran plot was 

utilized to analyze protein structures and assess the precision of the model, particularly focusing on 

backbone dihedral angles and overall geometry. Accordingly, Procheck UCLA [34] and 

Ramachandran plot analyses were performed to validate the stereochemical quality of the protein 

structures. 

Receptor preparation for EGF and FOXO3 was carried out using UCSF Chimera [35] by selecting 

chain A of the protein and removing any ions, ligands, or solvents. Swiss-PdbViewer [36] was 

employed for energy minimization, and the refined structure was saved as the current layer in PDB 

format. UCSF Chimera was then used again for structure editing, including adding hydrogens and 
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charges. In the Surface/Binding Analysis tool, the "Dock Prep" option was selected to prepare the 

receptor for docking studies.  

2.7. Ligand library construction and screening 

Active natural compounds were selected through a scientific literature survey. The PubChem [37] 

library was screened for natural compounds capable of actively targeting the selected receptors. All 

screened compounds were downloaded from PubChem in 3D SDF format. DruLiTo and OSIRIS 

software were employed for ADMET analysis. DruLiTo was used to calculate drug-likeness 

properties using the Lipinski filter [38], while the OSIRIS [39] Property Explorer was utilized to 

predict and evaluate toxicity profiles and risk factors such as mutagenicity, tumorigenicity, irritancy, 

and reproductive effects. These analyses facilitated the selection of compounds with favorable drug-

like properties.  

2.8. Ligand Preparation 

Based on criteria such as drug-likeness, toxicity profile, and pharmacokinetics, compounds were 

selected for preparation. The 3D SDF structures of the selected ligands were imported into Avogadro 

[40] software, where the force field was set to GAFF (General Amber Force Field). Geometry 

optimization was conducted with 5000 steps to refine the ligand structures, resulting in energy-

minimized forms suitable for docking studies. These files were then converted to PDB format using 

Avogadro. For the final ligand preparation of the selected compounds, UCSF Chimera was 

employed. Structure editing involved adding hydrogens and charges, and the files were saved in 

PDB format for molecular docking. 

2.9. Molecular Docking 

Docking of the ligands with the target receptor was performed using AutoDock Vina in 

Chimera. In docking simulations, good scores are those that are negative and have large 

absolute values. Thus, receptor-ligand interactions with the lowest score or free binding 

energy (ΔG) were prioritized, as these indicate the stability of the bound complex. After 

docking, the receptor-ligand PDBQT input files were generated automatically. Open Babel 

[41] was then used to convert the PDBQT files to PDB format. Based on docking results, 

compounds with high binding affinities and favorable binding modes were screened as 

potential drug candidates. Receptor-ligand interactions were visually analyzed using Biovia 

Discovery Studio software [42], which identified hydrogen bonds, hydrophobic interactions, 

and other relevant interactions in each docked pose. 

3. RESULTS AND DISCUSSION 

3.1. Identification of differentially expressed genes and Meta-Analysis  

In this study, five gene expression profiling microarray datasets, representing five different cases of 

pancreatic cancer, were selected and analyzed individually. The analysis was conducted using the 

online tool GEO2R to identify Differentially Expressed Genes (DEGs). Read normalization was 
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performed, with samples designated as test and control groups, prior to metagenomics analysis. The 

results are depicted as box plots, volcano plots, and MA plots (Fig. 1–3).  

 

Fig. 1: Normalization plot obtained from geodatasets (a. GSE16515, b. GSE28735, 

c.GSE18670, d. GSE57728, e. GSE19650) 
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Fig. 2: Volcano plot obtained from Geo Datasets (a. GSE16515, b. GSE28735, c.GSE18670, 

d. GSE57728, e. GSE19650) 
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Fig. 3: MA plotobtained from Geo Datasets (a. GSE16515, b. GSE28735, c.GSE18670, d. 

GSE57728, e. GSE19650) 

Differentially expressed genes for each case were identified using a p-value threshold of <0.05. In 

GSE16515 (case 1), 23,304 DEGs were identified by comparing 36 tumor samples with 16 normal 

samples. In GSE28735 (case 2), 12,109 DEGs were obtained by analyzing gene expression profiles 

from 45 pairs of pancreatic tumor and adjacent non-tumor tissues. Gene expression profiles from 

GSE18670 (case 3) revealed 9,143 DEGs when circulating tumor cells (CTCs) were compared with 

haematological cells (G), the original tumor (T), and non-tumorous pancreatic control tissue (P) 

derived from patients with pancreatic ductal adenocarcinoma (PDAC). Specifically, 2,003 DEGs 

were identified in CTC vs. G, 3,536 DEGs in CTC vs. T, and 3,604 DEGs in CTC vs. P. GSE57728 

(case 4) identified 11,556 DEGs from AsPC1 cells treated with ICG-001, DMSO, and transfected 

with control siRNA and CTNNB1 siRNA at different time points. Finally, GSE19650 (case 5) 

identified 24,142 DEGs when the normal main pancreatic duct was used as a control and compared 

to three test groups: IPMA (test 1), IPMC (test 2), and IPMN (test 3). 

Further analysis of DEGs across all five datasets revealed 249 conserved genes common to all cases, 

as shown in Fig. 4a. A Protein-Protein Interaction (PPI) network of these conserved genes, focused 

on metabolic pathways, was constructed using STRINGApp in Cytoscape. From this network, the 

http://www.rjlbpcs.com/


Anwar et al RJLBPCS 2025                              www.rjlbpcs.com          Life Science Informatics Publications 

© 2025 Life Science Informatics Publication All rights reserved 

Peer review under responsibility of Life Science Informatics Publications 

2025 Jan – Feb RJLBPCS 11(1) Page No.20 

 

top 10 hub genes—EGF, PTEN, TGFB1, KRAS, CREBBP, PECAM1, FOXO3, H2BC21, FYN, 

and THBS1—were identified (Fig. 4b). 

 

Fig. 4: (a) Venn diagram illustrating the overlapping number of Differentially Expressed Genes 

(DEGs) across various analyzed datasets. (b) PPI network of top ten hub genes obtained from string 

analysis 

Based on a review of scientific literature, EGF and FOXO3 were selected for further analysis due 

to their critical roles in pancreatic cancer progression. EGF promotes tumor growth by activating 

key signaling pathways, while FOXO3 plays a vital role in regulating apoptosis and cell cycle 

control. Suppression of FOXO3 results in uncontrolled cell proliferation and survival. Thus, 

targeting these genes may disrupt cancer progression and improve therapeutic outcomes. 

3.2. Receptor Analysis and Preparation 

The ProtParam tool was used to analyze the physicochemical properties of the EGF and FOXO3 

receptors by calculating relevant parameters. For EGF and FOXO3, the number of amino acids was 

found to be 1207 and 673, respectively. The theoretical pI values were 5.53 for EGF and 4.98 for 

FOXO3. The instability index values were 48.69 and 66.77, indicating the stability levels of the 

proteins, while the grand average of hydropathicity (GRAVY) values were -0.34 and -0.594, 

respectively, as shown in Table 1. Secondary structure predictions for EGF and FOXO3 were 
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performed using SOPMA, identifying elements such as alpha helices, beta turns, random coils, and 

others, as depicted in Figures 5 and 6. Protein classification was conducted using SOSUI, which 

identified EGF as a membrane protein and FOXO3 as a soluble protein, as shown in Figures 7 and 

8.  

Table 1: Protparam Results for physiochemical properties of EGF and FOXO3 

EGF  FOXO3 

Number of amino acids: 1207  Number of amino acids: 673 

Molecular weight: 133994.17  Molecular weight: 71276.63 

Theoretical Pi: 5.53  Theoretical Pi: 4.98 

Instability Index (II): 48.69  

This classifies the protein as unstable 

Instability Index (II): 66.77  

This classifies the protein as unstable 

Aliphatic Index: 77.26  Aliphatic Index: 62.11 

Grand average of 

hydropathicity (GRAVY): -

0.304 

Grand average of 

hydropathicity (GRAVY): -

0.594 
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Fig.5: Secondary structure prediction of EGF using SOPMA. (a) Visualization of the 

predicted secondary structure elements (b) Score curves for each predicted state 

 

 

Fig.6: Secondary structure prediction of FOXO3 using SOPMA. (a) Visualization of the 

predicted secondary structure elements (b) Score curves for each predicted state 
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Fig.7: SOSUI secondary structure prediction of EGF. (a) Hydropathy plot showing 

hydrophobicity, with red indicating hydrophobic regions. (b) Charge plot, illustrating 

positively charged regions with blue and negatively charged regions with yellow. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8: SOSUI secondary structure prediction of FOXO3. (a) Hydropathy plot showing 

hydrophobicity, with red indicating hydrophobic regions (b) Charge plot, illustrating positively 

charged regions with blue and negatively charged regions with yellow. 

The three-dimensional (3D) structure of the proteins was modeled using SWISS-MODEL via 

homology modeling. Protein structure validation was carried out using PROCHECK UCLA, and 

the Ramachandran plot analysis revealed that 79.3% of EGF residues were within favored regions, 

with 3.0% in generously allowed regions and 2.9% in disallowed regions. Similarly, for FOXO3, 
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78.3% of residues were in favored regions, 3.6% in generously allowed regions, and 2.4% in 

disallowed regions, as illustrated in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: Ramachandran plot for (a) EGF (B) FOXO3 

The receptors (EGF and FOXO3) were further refined using Chimera, where additional chains, 

ions, ligands, and solvent molecules were removed. Swiss PDB Viewer was employed for 

energy minimization of the receptors. Finally, Chimera was used for the final receptor 

preparation, which included the addition of hydrogens and charges, making the receptors ready 

for docking. 
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Table.2: Drug-likeness descriptors of 20 compounds calculated using DruLito software 

Toxicity analysis was conducted to evaluate the compounds for tumorigenicity, mutagenicity, irritant 

potential, and reproductive toxicity using the OSIRIS Property Explorer. Of the 20 selected ligands, 

15 compounds met the drug-likeness criteria and passed toxicity screening, as shown in Table 3. The 

non-toxic compounds included Chrysin, Deguelin, Pseudolaric acid-B, Triterpenoid, Diallyl 

disulfide, Diallyl trisulfide, Scabraside, Pheophorbide a, Aleuritin, Aleuritone, Curcumin, 

Hydroxytyrosol, Pisiferic acid, Oxyresveratrol, and Cryptotanshinone. These 15 compounds were 

subsequently subjected to docking studies to evaluate their binding affinities and interactions with 

the target receptors. 

Table.3: Toxicity profile of the 20 compounds 
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3.4. Docking Studies  

Molecular docking was performed for the 15 screened compounds with the target receptors EGF 

and FOXO3. The binding pocket coordinates for EGF, obtained from CASTp, were -15.646, 22.390, 

2.681, and for FOXO3, they were 6.299, -19.954, -1.830. The pocket center size was set to 20 for 

all three dimensions. Docking results were evaluated based on binding energies (ΔG). The best result 

for EGF was a binding energy of -6.5 kcal/mol with pheophorbide a, while for FOXO3, the best 

score was -6.9 kcal/mol with Curcumin. These two compounds were selected based on their low 

binding energies and high binding affinities, as shown in (Table 4). Additional docking scores and 

interactions are summarized in (Table 5). The binding energies indicate strong binding affinity and 

stability of these compounds with their respective target receptors.  

Table 4: The two selected compounds with high binding affinity and their interactions 3.5 

Compounds Vina 

Score/Bindi

ng Affinity 
 

Ligand Distance  

(Å) 

 

Target  

Protein 

 

Category  

 
Type Of  

Interaction 

 

EGF-  

Pheophorbide a 

 

-6.5 UNL1:C  4.88  A:ARG678  Hydrophobic  Alkyl  

Interaction 

  UNL1  3.99  A:ARG678  Hydrophobic  Pi-Alkyl  

Interaction 

  UNL1:H  2.31  UNL1:N  Hydrogen  

Bond 

Conventional 

Hydrogen  

Bond  

Interaction 

  UNL1:H  2.33  UNL1:N  Hydrogen  

Bond 

Conventional 

Hydrogen  

Bond  

Interaction 

  UNL1:C  4.74  A:ARG677  Hydrophobic  Alkyl  

Interaction 

  UNL1:O  1.98  A:GLN681 :HN Hydrogen  

Bond 

Convention al 

Hydrogen 

Bond  

Interaction 

  UNL1:H  2.46  A:ASP683: 

OD2 

Hydrogen  

Bond 

Conventional 

Hydrogen  

Bond  

Interaction 

  UNL1:C  3.65  A:THR714: O Hydrogen  

bond 

Carbon  

Hydrogen  

Bond  

Interaction 

  UNL1  2.77  A:ARG677: 

HG1 

Weak  

non-

covalent 

Bond 

Pi-Sigma  

Interaction 
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  UNL1:C  4.37  A:ARG677  Hydrophobic  Alkyl 

Interaction 

  UNL1:O  2.73  A:GLN681: O Non-

Covalent 

Unfavorable 

Acceptor-

Acceptor  

Interaction 

  UNL1:C  4.4  A:ARG678  Hydrophobic  Alkyl 

Interaction 

FOXO3-  

Curcumin 

-6.9  UNL1  3.77  A:TYR162  Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1:C  5.19  A:TRP186  Hydrophobic Pi-Alkyl 

Interaction 

  UNL1  3.99  A:VAL191  Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:O  2.95  A:ASN159: HN Hydrogen 

Bond 

 

Conventional 

Hydrogen  

Bond  

Interaction 

  UNL1:O  2.59  A:GLY158: 

HT1 

Hydrogen 

Bond 

 

Conventional 

Hydrogen  

Bond  

Interaction 

  UNL1:O  2.15  A:TYR162: HN Hydrogen 

Bond 

Conventional 

Hydrogen  

Bond  

Interaction 

  UNL1:C  5.13  A:VAL191  Hydrophobic  Alkyl 

Interaction 

  UNL1:O  2.43  A:LEU160: HN Hydrogen 

Bond 

 

Conventional 

Hydrogen  

Bond  

Interaction 

 

Table 5: Docking scores and interactions of the 20 compounds with the target receptor is shown in 

table below 

 

Compounds Vina 

Score/B

inding 

Affinity  

Ligand Distance (Å) Target 

Protein 

Category Type Of 

Interaction 

EGF-Chrysin -5.3 UNL1 4.28 A:ARG633 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 4.41 A:ARG633 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 4.51 A:GLU595:O

E2 

Weak non-

covalent Bond 

Pi-Anion 

Interaction 
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  UNL1:O 2.2 A:GLU595:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.03 A:LYS594:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.5 A:THR593:H

A 

Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

Interaction 

EGF- Deguelin -5.9 UNL1:O 2.88 A:GLN681:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.59 A:THR680:H

A 

Hydogen Bond Carbon 

Hydrogen Bond 

Interaction 

  UNL1:C 3.11 A:LEU679:O Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1 4.89 A:ARG718 Hydrophobic Alkyl 

Interaction 

  UNL1 4.51 A:LYS716 Hydrophobic Alkyl 

Interaction 

  UNL1 2.55 A:LYS716:H

G1 

Weak non-

covalent Bond 

Pi-Sigma 

Interaction 

  UNL1:O 2.82 A:ARG718:H

H21 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.33 A:ARG718:H

H22 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

EGF- Pseudolaric 

acid-B 

-5.5 UNL1:C 3.76 A:ARG678 Hydrophobic Alkyl 

Interaction 

  UNL1 4.76 A:LYS716 Hydrophobic Alkyl 

Interaction 

  UNL1:O 2.41 A:LYS716:H

A 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:H 2.49 A:GLY715:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 1.27 A:ARG718:H

H22 

Non-Covalent Unfavorable 

Donor-Donor 

Interaction 

  UNL1:C 4.31 A:LYS716 Hydrophobic Alkyl 

Interaction 

EGF- Triterpenoid -6.3 UNL1:C 4.18 A:ARG678 Hydrophobic Alkyl 

Interaction 

  UNL1:O 2.77 A: GLN681:O Non-Covalent Unfavorable 

Acceptor-
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Acceptor 

Interaction 

  UNL1:H 2.39 A:GLN681:O

E1 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.2 A:GLN681:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.16 A:PRO442 Hydrophobic Alkyl 

Interaction 

  UNL1 4.99 A:PRO442 Hydrophobic Alkyl 

Interaction 

EGF-Diallyl 

disulfide 

-2.7 UNL1:C 4.83 A:MET668 Hydrophobic Alkyl 

Interaction 

  UNL1 4.9 A:ARG713 Hydrophobic Alkyl 

Interaction 

  UNL1 5.07 A:ARG713 Hydrophobic Alkyl 

Interaction 

  UNL1:C 4.13 A:ARG713 Hydrophobic Alkyl 

Interaction 

  UNL1:C 3.73 A:LYS712 Hydrophobic Alkyl 

Interaction 

EGF-Diallyl 

trisulfide 

-2.6 UNL1:C 4.6 A:LYS655 Hydrophobic Alkyl 

Interaction 

  UNL1:C 4.54 A:LYS712 Hydrophobic Alkyl 

Interaction 

  UNL1:C 4.62 A:MET668 Hydrophobic Alkyl 

Interaction 

  UNL1 5.16 A:MET668 Hydrophobic Alkyl 

Interaction 

  UNL1 4.3 A:ARG713 Hydrophobic Alkyl 

Interaction 

  UNL1:S 3.08 A:ARG677:N

H1 

Non- covalent Sulfur-X 

Interaction 

  UNL1:C 4.16 A:LYS675 Hydrophobic Alkyl 

Interaction 

  UNL1 4.48 A:LYS712 Hydrophobic Alkyl 

Interaction 

EGF-Scabraside -5.6 UNL1:O 2.33 A:GLN681:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 3.41 A:ASP683:O

D2 

Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1 3.73 UNL1 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 
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  UNL1 4.34 UNL1  Pi-Pi Stacked 

Interaction 

  UNL1 4.33 A:LYS716 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:H 2.79 UNL1:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.92 A:THR680:H

A 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:H 2.79 A:LEU679:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 5.54 A:MET668 Non-covalent Pi-Sulfur 

Interaction 

  UNL1:O 2.71 A:ARG677:H

H11 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 2.54 A:THR714:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 2.53 A:ARG678:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 3.1 A:LYS716:H

E2 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:H 2.56 UNL1:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 2.45 A:THR714:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

EGF- 

Pheophorbide a 

-6.5 UNL1:C 4.88 A:ARG678 Hydrophobic Alkyl 

Interaction 

  UNL1 3.99 A:ARG678 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:H 2.31 UNL1:N Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 2.33 UNL1:N Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.74 A:ARG677 Hydrophobic Alkyl 

Interaction 

  UNL1:O 1.98 A:GLN681:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 
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  UNL1:H 2.46 A:ASP683:O

D2 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 3.65 A:THR714:O Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1 2.77 A:ARG677:H

G1 

Weak non-

covalent Bond 

Pi-Sigma 

Interaction 

  UNL1:C 4.37 A:ARG677 Hydrophobic Alkyl 

Interaction 

  UNL1:O 2.73 A:GLN681:O Non-Covalent Unfavorable 

Acceptor-

Acceptor 

Interaction 

  UNL1:C 4.4 A:ARG678 Hydrophobic Alkyl 

Interaction 

EGF-Aleuritin -6 UNL1:C 3.31 A:THR714:O Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:C 3.77 A:THR7184:

O 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:H 2.34 A:GLY715:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 2.51 A:ARG713:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.83 A:LEU679:O Hydrophobic Alkyl 

Interaction 

  UNL1:C 3.58 A:ARG678:O Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:O 2.63 A:THR680:H

A 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:C 4.47 A:ARG677 Hydrophobic Alkyl 

Interaction 

EGF-Aleuritone -5.3 UNL1:O 2.73 A:LYS716 Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:O 3.1 A:LYS716:H

Z3 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.96 A:THR714:H

B 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:C 4.79 A:ARG713 Hydrophobic Alkyl 

Interaction 
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  UNL1:C 3.88 A:PRO442 Hydrophobic Alkyl 

Interaction 

  UNL1:O 2.18 A:ARG677:H

H11 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.71 A:ARG677 Hydrophobic Alkyl 

Interaction 

  UNL1:C 4.14 A:ARG677 Hydrophobic Alkyl 

Interaction 

EGF-Curcumin -5.3 UNL1:C 3.65 A:ASP683:O

D2 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:O 2.59 A:ARG718:H

H21 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.38 A:ARG718:H

H22 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.23 A:GLN681:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 5.18 A:ARG677 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:O 2.11 A:ARG678:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

EGF- 

Hydroxytyrosol 

-4.6 UNL1:O 2.42 A:ARG677:H

H12 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 1.98 A:PRO442:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.16 A:ARG713:N

H2 

Non-covalent Pi-Cation 

  UNL1 4.64 A:ARG713 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:H 2.08 A:ARG713:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 1.33 A:LYS655:H

Z3 

Hydrogen 

bond donor 

Unfavorable 

Donor-Donor 

Interaction 

EGF-Pisiferic acid -5.3 UNL1:O 2.64 A:LEU679:H

A 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:H 1.97 A:LEU679:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 
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  UNL1:O 2.2 A:ARG718:H

H22 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

EGF- 

Oxyresveratrol 

-5.1 UNL1 5.17 A:MET668:S

D 

Non-covalent Pi-Sulfur 

Interaction 

  UNL1 4.86 A:LYS655:N

Z 

Non-covalent Pi-Cation 

Interaction 

  UNL1 4.9 A:ARG677 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:O 2.86 A:ARG713:H

H21 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 5.25 A:LYS712 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 4.9 A:ARG677 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 4.42 A:ARG713 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 2.93 A:ARG677:H

D2 

Weak non-

covalent Bond 

Pi-Sigma 

Interaction 

  UNL1 3.84 A:ARG677:N

H1 

Non-covalent Pi-Cation; Pi-

Donor 

Hydrogen Bond 

Interaction 

  UNL1 4.41 A:ARG713:N

H1 

Non-covalent Pi-Cation 

Interaction 

EGF- 

Cryptotanshinone 

-5.9 UNL1 5.22 A:PRO465 Hydrophobic Alkyl 

Interaction 

  UNL1 5.26 A:TRP764 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 4.46 A:TRP674 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 5.53 A:TRP764 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

FOXO3-Chrysin -6.5 UNL1:O 2.9 A:GLY158:H

T2 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.06 A:GLY158:H

T1 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.2 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 3.88 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 5.5 A:VAL191 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 3.72 A:TYR162 Van der waals Pi-Pi Stacked 
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forces Interaction 

  UNL1:H 1.92 UNL1:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

FOXO3- Deguelin -5.7 UNL1:C 4.36 A:VAL191 Hydrophobic Alkyl 

Interaction 

  UNL1:C 4.38 A:TYR193 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 4.03 A:TYR193 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 5.27 A:TYR193  Pi-Pi Stacked 

Interaction 

  UNL1:O 2.88 A:TYR193:H

H 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.65 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1:C 5.09 A:TYR162 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:C 3.53 A:SER209:O

G 

Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:C 4.92 A:LEU165 Hydrophobic Alkyl 

Interaction 

  UNL1:C 4.42 A:LEU160 Hydrophobic Alkyl 

Interaction 

  UNL1 4.65 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 3.26 A:TYR162:H

H 

Non-covalent Pi-Donor 

Hydrogen Bond 

Interaction 

FOXO3-

Pseudolaric acid-B 

-5.4 UNL1:C 4.68 A:VAL191 Hydrophobic Alkyl 

Interaction 

  UNL1:O 2.16 A:GLY158:H

T3 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 3.69 A:TYR193 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:C 4.29 A:TYR193 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 5.2 A:TYR193 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1:O 2.99 A:LEU160:O Non-Covalent Unfavorable 

Acceptor-

Acceptor 

Interaction 

  UNL1:O 2.57 A:SER161:H Hydrogen Carbon 

Hydrogen Bond 
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A bond Interaction 

  UNL1 4.78 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.06 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:O 2.57 A:SER161:H

A 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:O 2.51 A:TYR162:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 3.61 A:ASN213:O

D1 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:O 2.03 A:TYR162:H

H 

Hydrogen 

bond 

Conventional 

Hydrogen Bond 

Interaction 

FOXO3- 

Triterpenoid 

-4 UNL1:C 4.85 A:TRP186 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 5.49 A:TRP186 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 3.46 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.58 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1 3.89 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.1 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 2.23 A:GLY158:H

T1 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 5.44 A:LEU160 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 2.11 A:ARG168:H

H22 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.72 A:ARG168 Hydrophobic  Alkyl 

Interaction 

FOXO3-Diallyl 

disulfide 

-3 UNL1 5.02 A:LEU160 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.35 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.15 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 3.73 A:VAL191 Hydrophobic  Alkyl 

Interaction 
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  UNL1 4.35 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.14 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 5.17 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.45 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 5.2 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 5.45 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.72 A:PHE194 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 3.97 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

FOXO3-Diallyl 

trisulfide 

-3.3 UNL1:C 4.27 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.98 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.95 A:PHE194 Hydrophobic  

 

Pi-Alkyl 

Interaction 

  UNL1:C 4.68 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 4.37 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 5.04 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 3.56 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.05 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:S 3.95 A:TYR193 Non-covalent Pi-Sulfur 

Interaction 

  UNL1 5.29 A:VAL191 Hydrophobic  Alkyl 

Interaction 

FOXO3- 

Scabraside 

-4.2 UNL1:O 2.64 A:ARG168:H

H12 

Hydrogen 

bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.73 A:ARG168:H

H22 

Hydrogen 

bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.96 A:VAL191 Hydrophobic Pi-Alkyl 

Interaction 

  UNL1 5.13 A:PRO192 Hydrophobic  Pi-Alkyl 
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Interaction 

  UNL1:C 4.88 A:PRO192 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.98 UNL1 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1:O 3 A:GLY158:H

A1 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:O 2.22 A:GLY158:H

T3 

Hydrogen 

bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 5.46 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1:H 2.84 UNL1:O Hydrogen 

bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.76 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.32 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 2.5 A:GLY158:H

T2 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.34 A:TYR162:H

H 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

FOXO3- 

Pheophorbide a 

-5.6 UNL1 5.38 A:PRO192 Hydrophobic  Alkyl 

Interaction 

  UNL1:H 2.31 UNL1:N Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.22 A:VAL191:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.25 A:PRO192 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:H 2.33 UNL1:N Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 4.4 A:LYS195 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 3.01 A:ARG189:H

E 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 3.98 A:LYS195 Hydrophobic  Alkyl 

Interaction 

  UNL1 5.23 A:PRO192 Hydrophobic  Pi-Alkyl 

Interaction 
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  UNL1:C 4.39 A:PRO192 Hydrophobic  Alkyl 

Interaction 

FOXO3- Aleuritin -5.4 UNL1:C 4.81 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.47 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 4.06 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 3.97 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 3.88 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1:C 5.11 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:O 2.27 A:TYR162:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 3.55 A:SER209:O

G 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

  UNL1:C 5.05 A:PHE194 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.42 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 2.62 A:GLY158:H

T2 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.75 A:GLY158:H

T1 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

FOXO3- 

Aleuritone 

-5.6 UNL1:C 4.6 A:TRP186 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.87 A:LEU178 Hydrophobic  Alkyl 

Interaction 

  UNL1 5.49 A:LEU178 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.6 A:TRP186 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 4.15 A:ARG189 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.59 A:PRO174 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 2.57 A:PRO174:H

D2 

Hydrogen 

bond 

Carbon 

Hydrogen Bond 

Interaction 

FOXO3- Curcumin -6.9 UNL1 3.77 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 
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  UNL1:C 5.19 A:TRP186 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 3.99 A:VAL191 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:O 2.95 A:ASN159:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.59 A:GLY158:H

T1 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 2.15 A:TYR162:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:C 5.13 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:O 2.43 A:LEU160:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

FOXO3- 

Hydroxytyrosol 

-5.4 UNL1 4.61 A:LEU165 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 4.79 A:LEU160 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:O 2.76 A:ASN159:H

N 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:H 2.69 A:LEU160:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.65 A:VAL191 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:H 2.36 A:CYS190:O Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1:O 3.07 A:GLY158:H

T2 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

FOXO3- Pisiferic 

acid 

-6.2 UNL1:C 4.6 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 4.39 A:TYR162 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1 5.95 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 4.22 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1:C 4.62 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:O 2.17 A:TYR162:H

H 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 
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Interaction 

  UNL1:H 1.39 A:TYR193:H

H 

Non-covalent Unfavorable 

Donor-Donor 

Interaction 

FOXO3- 

Oxyresveratrol 

-5.7 UNL1:O 2.71 A:TYR162:H

H 

Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

Interaction 

  UNL1 4.05 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 3.64 A:TYR162 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

FOXO3- 

Cryptotanshinone 

-6.1 UNL1 4.03 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 3.82 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.57 A:TYR193 Hydrophobic  Pi-Alkyl 

Interaction 

  UNL1:C 3.82 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.88 A:VAL191 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 4.37 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1;C 4.79 A:LEU165 Hydrophobic  Alkyl 

Interaction 

  UNL1:C 3.87 A:LEU160 Hydrophobic  Alkyl 

Interaction 

  UNL1 4.02 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

  UNL1 4.36 A:TYR193 Van der waals 

forces 

Pi-Pi Stacked 

Interaction 

 

3.5. Visualization 

The receptor-ligand interactions were visualized using Biovia Discovery Studio. The docked poses 

of the two compounds—Pheophorbide a with EGF and Curcumin with FOXO3—were examined 

and are depicted in Fig. 10 and Fig. 11, respectively. 

In the interaction between EGF and Pheophorbide a, four conventional hydrogen bonds were 

observed. These bonds formed with UNL1 (at bond distances of 2.31 Å and 2.33 Å), GLN681 (1.98 

Å), and ASP683 (2.46 Å). Additionally, one carbon hydrogen interaction was noted with THR174 

at a bond distance of 3.65 Å. Several alkyl interactions were identified, including two with ARG678 

(4.88 Å and 4.4 Å) and two with ARG677 (4.74 Å and 4.37 Å). A Pi-Alkyl interaction with ARG678 

was observed at a bond distance of 3.99 Å, alongside a Pi-Sigma interaction with ARG677 at 2.77 

Å. and one Unfavorable Acceptor-Acceptor Interaction with GLN681 having the bond distance of 
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2.73 Å. 

In the interaction between FOXO3 and Curcumin, four conventional hydrogen bonds were 

formed with ASN159 (2.95 Å), GLY158 (2.59 Å), TYR162 (2.15 Å), and LEU160 (2.43 Å). 

Additionally, one Pi-Pi stacked interaction was identified with TYR162 at a bond distance of 

3.77 Å. Two Pi-Alkyl interactions occurred with TRP186 and VAL191, at bond distances of 

5.19 Å and 3.99 Å, respectively. An additional alkyl interaction was observed with VAL191 at 

a bond distance of 5.13 Å. 

 

Fig.10:(a) Docked pose of the compound pheophorbide a with EGF receptor. (b) ligand 

interaction diagram showing important interactions involved in the complex as dashed lines. 

(c) 2D plot of the docked complex. All interactions were visualized or generated using Biovia 

Discovery Studio Visualizer. 
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Fig.11: (a) Docked pose of the compound Curcumin with FOXO3 receptor. (b) ligand 

interaction diagram showing important interactions involved in the complex as dashed lines. 

(c) 2D plot of the docked complex. All interactions were visualized or generated using Biovia 

Discovery Studio Visualizer. 

DISCUSSION  

Sequencing data and bioinformatics approaches can identify novel targets, driver mutations, and 

dysregulated pathways in pancreatic cancer, potentially improving therapeutics, survival rates, and 

the quality of life for patients. In our study, we conducted a meta-analysis of five microarray gene 

expression profiling datasets, or case studies, related to pancreatic cancer. This analysis led to the 

identification of differentially expressed genes (DEGs) across various pancreatic cancer cases. 

Further gene conservancy analysis revealed a subset of significant DEGs common to all cases. Key 

hub genes, including EGF, PTEN, TGFB1, KRAS, CREBBP, PECAM1, FOXO3, H2BC21, FYN, 

and THBS1, were identified from the conserved gene set. These highly expressed genes may play 

critical roles in determining patient prognosis in pancreatic cancer. Variations in prognosis may stem 

from the regulatory functions of these genes. Among the identified DEGs, EGF and FOXO3 

emerged as critical targets due to their involvement in tumor growth and survival pathways. EGF 

enhances cell growth and survival by activating pathways like the RAF-mitogen-activated protein 

kinase (MAPK) and phosphoinositide-3-kinase (PI3K) pathways [43]. EGFR, a glycoprotein and 
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tyrosine kinase receptor within the HER family, initiates signaling crucial for cell growth, 

differentiation, and survival [44]. EGFR is overexpressed in 30–95% of pancreatic cancer cases 

[45,46], with its overexpression linked to poor prognosis [47]. During the progression from 

pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC), there is 

a notable increase in EGFR expression, marking a crucial molecular shift in pancreatic cancer 

development. In PDAC, tumor cells rely on both EGFR and K-Ras signaling for growth. While K-

Ras oncogenes drive tumor proliferation, EGFR signaling is essential for initiating and advancing 

PDAC tumors. Targeting EGFR and its downstream pathways, such as PI3K and STAT3, could 

provide new therapeutic avenues. Notably, K-Ras alone does not activate key pathways like AKT 

and STAT3, but EGFR expression initiation cooperates with K-Ras to activate these signaling 

cascades in pancreatic lesions [48]. The combination of EGFR-targeted therapy with gemcitabine 

could potentially enhance pancreatic cancer outcomes [49]. While some combinations of EGFR 

inhibitors and chemotherapy show promise in inhibiting tumor growth and promoting cell death in 

animal models, their effectiveness still requires further validation. However, incorporating EGFR 

inhibition into a comprehensive treatment approach is emerging as a promising strategy for 

pancreatic cancer [45]. FOXO factors coordinate cellular responses by integrating various signals 

from inside and outside the cell, to balance growth-promoting cues with stress responses, 

determining whether cells grow, resist stress, or undergo apoptosis. FOXO3, a key member of this 

family (formerly known as FKHRL1), facilitates tumor progression and metastasis in pancreatic 

cancer by regulating cell proliferation, apoptosis, and DNA repair. Dysregulation of FOXO3 

disrupts this balance, leading to uncontrolled cell growth and survival, thereby enhancing tumor 

aggressiveness [50]. In pancreatic cancer, FOXO3 facilitates tumor advancement and metastasis. A 

recent study revealed that cyclic GMP (cGMP) reduces CD44 expression and cancer stem cell (CSC) 

properties in pancreatic cancer by inhibiting FOXO3. High FOXO3 activation signatures in patients 

correlate with poor prognosis, highlighting the potential of targeting FOXO3 and cGMP as 

therapeutic strategies. Inhibiting FOXO3 disrupts CSC properties, potentially slowing tumor 

progression in PDAC [51]. A library of natural compounds targeting key receptors implicated in 

pancreatic cancer progression and metastasis, such as EGF and FOXO3, was created using data from 

scientific literature and the PubChem database. Compounds with known 3D structures were 

evaluated for drug-likeness and ADMET properties using DruLito, considering criteria such as 

molecular weight, logP, and hydrogen bonding potential. Further toxicity screening using OSIRIS 

ensured these compounds lacked tumorigenic, mutagenic, irritant, or reproductive toxicity 

properties. Molecular docking studies conducted with AutoDock Vina in UCSF Chimera identified 

pheophorbide a and curcumin as potential inhibitors of EGF and FOXO3, respectively. 

Pheophorbide a exhibited a binding energy of -6.5 kcal/mol with EGF, forming four conventional 

hydrogen bonds, one carbon hydrogen bond, and several hydrophobic interactions. Similarly, 
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curcumin showed a binding energy of -6.9 kcal/mol with FOXO3, forming four hydrogen bonds, a 

Pi-Pi stacked interaction, and multiple hydrophobic interactions. These interactions, as visualized 

using Biovia Discovery Studio, indicate that both compounds could inhibit the activity of their 

respective targets, potentially slowing pancreatic cancer progression. Studies have highlighted the 

ability of pheophorbide a to selectively induce cell death in cancer cells and reduce tumor size in 

vivo, emphasizing its potential as a therapeutic agent against this aggressive cancer type [52,53]. 

Similarly, curcumin's anti-cancer properties—such as inducing apoptosis, inhibiting cell 

proliferation, and enhancing sensitivity to chemotherapy—position it as a promising candidate for 

cancer therapy [54-57]. Targeted therapy connects tumor characterization with personalized 

treatment, using genomics and biomarkers to identify genetic mutations and pathway alterations as 

pharmacological targets or prognostic indicators. Advances in genome sequencing have enabled the 

rapid identification of genetic differences between tumor and normal cells [58]. Next-generation 

sequencing (NGS) has been particularly instrumental in identifying molecular alterations driving 

pancreatic cancer progression. Sequencing data have also revealed the highly heterogeneous nature 

of pancreatic tumors, which often exhibit resistance to traditional chemotherapy and radiation 

therapies [59]. This underscores the challenges in treating pancreatic cancer, highlighting the need 

for more personalized, targeted therapeutic strategies. This study highlights the importance of 

bioinformatics and computational biology in drug discovery, particularly for complex diseases like 

pancreatic cancer. By integrating gene expression profiling, molecular docking, and toxicity 

screening, we identified natural compounds with potential therapeutic efficacy. Our findings suggest 

that pheophorbide a and curcumin could be promising candidates for further preclinical and clinical 

evaluation, potentially offering new avenues for the treatment of pancreatic cancer.  

4. CONCLUSION 

Pancreatic cancer remains one of the most aggressive cancers, and current treatments are often 

ineffective, necessitating novel strategies. Our computational analysis identified key genes, EGF 

and FOXO3, which play crucial roles in pancreatic cancer progression. EGF and its receptor, EGFR, 

regulate cell proliferation and survival, while FOXO3, involved in apoptosis and cell cycle 

regulation, is often suppressed in cancer. Through bioinformatic approaches, including compound 

screening and docking studies, we identified pheophorbide a and curcumin as potential inhibitors of 

these targets. These findings highlight the promise of targeting EGF and FOXO3 with natural 

compounds for therapeutic strategies. Further experimental validation is needed to confirm these 

findings and explore their clinical potential. Future research should focus on in vitro and in vivo 

studies to advance these compounds as effective treatments. 
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